Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (11): 63-69.doi: 10.3969/j.issn.2097-0706.2022.11.009
• Optimized Operation and Control of Integrating Energy Systems • Previous Articles Next Articles
YANG Mei1(), ZHOU Xichao2,*(
), WEI Qiang2, LIANG Dawei2, WU Maoqian3
Received:
2022-06-17
Revised:
2022-09-20
Published:
2022-11-25
Contact:
ZHOU Xichao
E-mail:yangmei@sgecs.sgcc.com.cn;zhouxichao@sgecs.sgcc.com.cn
CLC Number:
YANG Mei, ZHOU Xichao, WEI Qiang, LIANG Dawei, WU Maoqian. Study on dynamic optimal energy flow of a source-network-load-storage integrated energy system considering its economic benefit[J]. Integrated Intelligent Energy, 2022, 44(11): 63-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.11.009
Table 1
Electric power output of the dynamic optimal power flow
时间 | 电功率/MW | 电价/[美元·(MW·h)-1] | 时间 | 电功率/MW | 电价/[美元·(MW·h)-1] |
---|---|---|---|---|---|
01:00 | 0 | 50 | 13:00 | 11 | 105 |
02:00 | 0 | 50 | 14:00 | 0 | 50 |
03:00 | 0 | 50 | 15:00 | 0 | 50 |
04:00 | 0 | 50 | 16:00 | 0 | 50 |
05:00 | 0 | 50 | 17:00 | 23 | 170 |
06:00 | 0 | 50 | 18:00 | 11 | 105 |
07:00 | 0 | 50 | 19:00 | 0 | 50 |
08:00 | 0 | 50 | 20:00 | 0 | 50 |
09:00 | 4 | 70 | 21:00 | 18 | 140 |
10:00 | 48 | 280 | 22:00 | 12 | 110 |
11:00 | 28 | 180 | 23:00 | 0 | 50 |
12:00 | 13 | 120 | 24:00 | 0 | 50 |
[1] |
JIN H, HONG H, WANG B, et al. A new principle of synthetic cascade utilization of chemical energy and physical energy[J]. Science in China Series E:Technological Sciences, 2005, 48(2):163-179.
doi: 10.1360/04ye0234 |
[2] | 康重庆, 陈启鑫, 夏清. 低碳电力技术的研究展望[J]. 电网技术, 2009, 33(2):1-7. |
KANG Chongqing, CHEN Qixin, XIA Qing. Prospects of low-carbon electricity[J]. Power System Technology, 2009, 33(2):1-7. | |
[3] | 程耀华, 张宁, 康重庆, 等. 低碳多能源系统的研究框架及展望[J]. 中国电机工程学报, 2017, 37(14):4060-4069. |
CHENG Yaohua, ZHANG Ning, KANG Chongqing, et al. Research framework and prospects of low-carbon m ultiple energy system s[J]. Proceedings of the CSEE, 2017, 37(14):4060-4069. | |
[4] | 赵国涛, 钱国明, 王盛. “双碳”目标下绿色电力低碳发展的路径分析[J]. 华电技术, 2021, 43(6): 11-20. |
ZHAO Guotao, QIAN Guoming, WANG Sheng. Analysis on green and low-carbon development path for power industry to realize carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(6): 11-20. | |
[5] |
谢典, 高亚静, 芦新波, 等. 能耗“双控”向碳排放“双控”转变的实施路径研究[J]. 综合智慧能源, 2022, 44(7): 73-80.
doi: 10.3969/j.issn.2097-0706.2022.07.009 |
XIE Dian, GAO Yajing, LU Xinbo, et al. Research on the implementation path of the transition from dual control on energy consumption to dual control on carbon emission[J]. Integrated Intelligent Energy, 2022, 44(7): 73-80.
doi: 10.3969/j.issn.2097-0706.2022.07.009 |
|
[6] |
贾宏杰, 穆云飞, 余晓丹. 对我国综合能源系统发展的思考[J]. 电力建设, 2015, 36(1):16-25.
doi: 10.3969/j.issn.1000-7229.2015.01.003 |
JIA Hongjie, MU Yunfei, YU Xiaodan. Thought about the integrated energy system in China[J]. Electric Power Construction, 2015, 36(1):16-25.
doi: 10.3969/j.issn.1000-7229.2015.01.003 |
|
[7] | 贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39(7):198-207. |
JIA Hongjie, WANG Dan, XU Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power Systems, 2015, 39(7):198-207. | |
[8] |
刘自发, 谭雅之, 李炯, 等. 区域综合能源系统规划关键问题研究综述[J]. 综合智慧能源, 2022, 44(6): 12-24.
doi: 10.3969/j.issn.2097-0706.2022.06.002 |
LIU Zifa, TAN Yazhi, LI Jiong, et al. Review on key points in the planning for a district-level integrated energy system[J]. Integrated Intelligent Energy, 2022, 44(6): 12-24.
doi: 10.3969/j.issn.2097-0706.2022.06.002 |
|
[9] | 韩峰, 张衍国, 严矫平, 等. 综合能源服务业务和合作模式[J]. 华电技术, 2019, 41(11): 1-4. |
HAN Feng, ZHANG Yanguo, YAN Jiaoping, et al. Integrated energy service and cooperation modes[J]. Huadian Technology, 2019, 41(11): 1-4. | |
[10] | 杨勇平, 林振娴, 何坚忍. 热电联产系统中最佳冷源热网加热器的选择方法[J]. 中国电机工程学报, 2010, 30(26):1-6. |
YANG Yongping, LIN Zhenxian, HE Jianren. Chosen method of optimum cold source thermal-system heater in heat and power cogeneration system[J]. Proceeding of the CSEE, 2010, 30(26):1-6. | |
[11] |
PAN Z, GUO Q, SUN H. Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow[J]. Applied Energy, 2016, 167(10):230-243.
doi: 10.1016/j.apenergy.2015.10.095 |
[12] |
CORREA-POSADA C M, SANCHEZ-MARTIN P. Integrated power and natural gas model for energy adequacy in short-term operation[J]. IEEE Transactions on Power Systems, 2015, 30(6):3347-3355.
doi: 10.1109/TPWRS.2014.2372013 |
[13] | 刘长军. 楼宇热电冷联供系统的节能分析与应用研究[D]. 成都: 西南交通大学, 2006. |
[14] | 周任军, 冉晓洪, 毛发龙, 等. 分布式冷热电三联供系统节能协调优化调度[J]. 电网技术, 2012, 36(6):8-14. |
ZHOU Renjun, RAN Xiaohong, MAO Falong, et al. Energy-saving coordinated optimal dispatch of distributed combined cool,heat and power supply[J]. Power System Technology, 2012, 36(6):8-14. | |
[15] | 朱海东, 郝浩, 郑剑, 等. 基于冷热电多能互补的园区综合能源系统设计[J]. 华电技术, 2021, 43(4): 34-38. |
ZHU Haidong, HAO Hao, ZHENG Jian, et al. Design of integrated energy system for parks based on complementation of cold, heat and electricity[J]. Huadian Technology, 2021, 43(4): 34-38. | |
[16] | 孙思宇, 于成琪, 孙涛, 等. 冷热电三联供分布式能源系统研究进展[J]. 华电技术, 2019, 41(11): 26-31. |
SUN Siyu, YU Chengqi, SUN Tao, et al. Advance in study on CCHP distributed energy system[J]. Huadian Technology, 2019, 41(11): 26-31. | |
[17] | 顾泽鹏, 康重庆, 陈新宇, 等. 考虑热网约束的电热能源集成系统运行优化及其风电消纳效益分析[J]. 中国电机工程学报, 2015, 35(14):3596-3604. |
GU Zepeng, KANG Chongqing, CHEN Xinyu, et al. Operation optimization of integrated power and heat energy systems and the benefit on wind power accommodation considering heating network constraints[J]. Proceeding of the CSEE, 2015, 35(14):3596-3604. | |
[18] |
XU X, JIN X, JIA H, et al. Hierarchical management for integrated community energy systems[J]. Applied Energy, 2015, 160:231-243.
doi: 10.1016/j.apenergy.2015.08.134 |
[19] |
PAN Z, GUO Q, SUN H. Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow[J]. Applied Energy, 2016, 167:230-243.
doi: 10.1016/j.apenergy.2015.10.095 |
[20] |
MA T, WU J, HAO L, et al. Energy flow matrix modeling and optimal operation analysis of multi energy systems based on graph theory[J]. Applied Thermal Engineering, 2018, 146:648-663.
doi: 10.1016/j.applthermaleng.2018.10.022 |
[21] |
JASZCZUR M, HASSAN Q, PALEJ P, et al. Multi-objective optimization of a micro-grid hybrid power system for household application[J]. Energy, 2020, 202:117738.
doi: 10.1016/j.energy.2020.117738 |
[22] |
ZENG Q, FANG J, LI J, et al. Steady-state analysis of the inte grated natural gas and electric power system with bi-directional energy conversion[J]. Applied Energy, 2016, 184:1483-1492.
doi: 10.1016/j.apenergy.2016.05.060 |
[23] | 王英瑞, 曾博, 郭经, 等. 电-热-气综合能源系统多能流计算方法[J]. 电网技术, 2016, 40(10):2942-2950. |
WANG Yingrui, ZENG Bo, GUO Jing, et al. Multi-energy flow calculation method for integrated energy system containing electricity,heat and gas[J]. Power System Technology, 2016, 40(10):2942-2950. | |
[24] |
LI J, FANG J, ZENG Q, et al. Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources[J]. Applied Energy, 2016, 167:244-254.
doi: 10.1016/j.apenergy.2015.10.054 |
[25] | 徐宪东, 贾宏杰, 靳小龙, 等. 区域综合能源系统电/气/热混合潮流算法研究[J]. 中国电机工程学报, 2015, 35(14):3634-3642. |
XU Xiandong, JIA Hongjie, JIN Xiaolong, et al. Study on hybrid heat-gas-power flow algorithm for integrated community energy system[J]. Proceedings of the CSEE, 2015, 35(14):3634-3642. | |
[26] | 江茂泽, 徐羽镗, 王寿喜, 等. 输配气管网的模拟与分析[M]. 北京: 石油工业出版社, 1995:205-219. |
[27] | LIU X. Combined analysis of electricity and heat networks[D]. Cardiff: Cardiff University, 2013. |
[28] | BASU A K, CHOWDHURY S, CHOWDHURY S P. Operational management of CHP-based microgrid[C]// 2010 International Conference on Power System Technology(POWERCON).Hangzhou,China:IEEE, 2010:1-5. |
[29] |
LI Z, WU W, WANG J, et al. Transmission-constrained unit commitment considering combined electricity and district heating networks[J]. IEEE Transactions on Sustainable Energy, 2016, 7(2):480-492.
doi: 10.1109/TSTE.2015.2500571 |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[3] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[4] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[5] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[6] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[7] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[8] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[9] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[10] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
[11] | LI Bohang, LI Hongzhong, ZHANG Minyuan. Low-carbon economic dispatch of integrated energy systems considering load characteristics [J]. Integrated Intelligent Energy, 2023, 45(8): 72-79. |
[12] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[13] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
[14] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[15] | JIN Li, ZHANG Li, TANG Yang, TANG Qiao, REN Juguang, YANG Kun, LIU Xiaobing. Short-term prediction on integrated energy loads considering temperature-humidity index and coupling characteristics [J]. Integrated Intelligent Energy, 2023, 45(7): 70-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||