Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (11): 10-19.doi: 10.3969/j.issn.2097-0706.2023.11.002
• Planning and Scheduling Strategy • Previous Articles Next Articles
LIN Honghong1(), YU Tao1(
), ZHANG Guiyuan2,*(
), ZHANG Xiaoshun3(
)
Received:
2023-05-09
Revised:
2023-06-14
Published:
2023-11-25
Supported by:
CLC Number:
LIN Honghong, YU Tao, ZHANG Guiyuan, ZHANG Xiaoshun. Data-driven reactive power optimization algorithm for the distribution network with high proportion of renewable energy[J]. Integrated Intelligent Energy, 2023, 45(11): 10-19.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.11.002
Table 2
New energy generators'parameters in an IEEE 33-bus system(12:00)
新能源 | 接入新能源序号 | 风速/(m⋅s-1) | 辐照度/(W⋅m-2) | 有功功率/kW | 无功功率范围/(kV·A) |
---|---|---|---|---|---|
光伏电站 | 1 | 589.57 | 41.27 | [-43.55,43.55] | |
2 | 578.71 | 40.51 | [-44.26,44.26] | ||
3 | 535.71 | 37.50 | [-46.84,46.84] | ||
4 | 515.00 | 36.05 | [-47.96,47.96] | ||
风电场 | 1 | 11.70 | 290.10 | [-76.50,111.07] | |
2 | 11.48 | 282.74 | [-81.41,114.34] | ||
3 | 11.36 | 278.64 | [-84.15,116.16] | ||
电动汽车充放电站 | 1 | 70.00 | [-71.41,71.41] | ||
2 | 69.08 | [-72.30,72.30] | |||
3 | 63.12 | [-77.56,77.56] |
[1] |
魏韡, 范越, 谢睿, 等. 平抑高比例新能源发电功率波动的风-光-储容量最优配比[J]. 电力建设, 2023, 44(3):138-147.
doi: 10.12204/j.issn.1000-7229.2023.03.014 |
WEI Wei, FAN Yue, XIE Rui, et al. Optimal ratio of wind-solar-storage capacity for mitigating the power fluctuations in power system with high penetration of renewable energy power generation[J]. Electric Power Construction, 2023, 44(3):138-147.
doi: 10.12204/j.issn.1000-7229.2023.03.014 |
|
[2] | 刘国伟, 马楠, 邓浩, 等. 考虑需求侧管理和网络重构的配电网新能源承载能力评估[J/OL]. 中国电力:1-8[2023-06-07]. https://kns.cnki.net/kcms/detail/11.3265.TM.20221128.1420.006.html. |
LIU Guowei, MA Nan, DENG Hao, et al. Assessment of new energy supportability of distribution network considering demand side management and network reconfiguration[J]. Electric Power:1-8[2023-06-07]. https://kns.cnki.net/kcms/detail/11.3265.TM.20221128.1420.006.html. | |
[3] | 鞠冠章, 王靖然, 崔琛, 等. 极端天气事件对新能源发电和电网运行影响研究[J]. 智慧电力, 2022, 50(11): 77-83. |
JU Guanzhang, WANG Jingran, CUI Chen, et al. Impact of extreme weather events on new energy power generation and power grid operation[J]. Smart Power, 2022, 50(11): 77-83. | |
[4] | 杨策, 孙伟卿, 韩冬. 考虑新能源消纳能力的电力系统灵活性评估方法[J]. 电网技术, 2023, 47(1):338-349. |
YANG Ce, SUN Weiqing, HAN Dong, Power system flexibility evaluation considering renewable energy accommodation[J]. Power System Technology, 2023, 47(1):338-349. | |
[5] |
XU B, ZHANG G, LI K, et al. Reactive power optimization of a distribution network with high-penetration of wind and solar renewable energy and electric vehicles[J]. Protection and Control of Modern Power Systems, 2022, 7(1): 51.
doi: 10.1186/s41601-022-00271-w |
[6] |
杨蕾, 吴琛, 黄伟, 等. 含高比例风光新能源电网的多目标无功优化算法[J]. 电力建设, 2020, 41(7):100-109.
doi: 10.12204/j.issn.1000-7229.2020.07.013 |
YANG Lei, WU Chen, HUANG Wei, et al. Pareto-based multi-objective reactive power optimization for power grid with high-penetration wind and solar renewable energies[J]. Electric Power Construction, 2020, 41(7): 100-109.
doi: 10.12204/j.issn.1000-7229.2020.07.013 |
|
[7] | 胡丹尔, 彭勇刚, 韦巍, 等. 多时间尺度的配电网深度强化学习无功优化策略[J]. 中国电机工程学报, 2022, 42 (14):5034-5045. |
HU Daner, PENG Yonggang, WEI Wei, et al. Multi-timescale deep reinforcement learning for reactive power optimization of distribution network[J]. Proceedings of the CSEE, 2022, 42(14):5034-5045. | |
[8] |
ZHOU Y, LI Z S, WANG G R. Study on leveraging wind farms' robust reactive power range for uncertain power system reactive power optimization[J]. Applied Energy, 2021, 298: 117130.
doi: 10.1016/j.apenergy.2021.117130 |
[9] |
LIU Y C, ĆETENOVIĆ D, LI H Y, et al. An optimized multi-objective reactive power dispatch strategy based on improved genetic algorithm for wind power integrated systems[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: 107764.
doi: 10.1016/j.ijepes.2021.107764 |
[10] |
胡戎, 邱晓燕, 张志荣. 计及无功裕度的配电网两阶段无功优化调度策略[J]. 电力建设, 2021, 42(9):129-139.
doi: 10.12204/j.issn.1000-7229.2021.09.014 |
HU Rong, QIU Xiaoyan, ZHANG Zhirong. Two-stage reactive power optimization for distribution network considering reactive power margin[J]. Electric Power Construction, 2021, 42(9): 129-139.
doi: 10.12204/j.issn.1000-7229.2021.09.014 |
|
[11] | 李文升, 郑志杰, 綦陆杰, 等. 基于双状态评估器与深度强化学习的配电网无功优化[J]. 电力电容器与无功补偿, 2023, 44(2): 1-9,60. |
LI Wensheng, ZHENG Zhijie, QI Lujie, et al. Var optimization of distribution network based on dual-state evaluator and deep reinforcement learning[J]. Power Capacitor & Reactive Power Compensation, 2023, 44(2):1-9,60. | |
[12] |
TANG Z Y, HILL D J, LIU T. Distributed coordinated reactive power control for voltage regulation in distribution networks[J]. IEEE Transactions on Smart Grid, 2020, 12(1): 312-323.
doi: 10.1109/TSG.5165411 |
[13] | 孙浩锋, 章健, 熊壮壮, 等. 含风光储联合发电系统的主动配电网无功优化[J]. 电测与仪表, 2023, 60(2): 104-110,125. |
SUN Haofeng, ZHANG Jian, XIONG Zhuangzhuang, et al. Reactive power optimization of active distribution network with wind-energy storage hybrid generation system[J]. Electrical Measurement & Instrumentation, 2023, 60(2): 104-110,125. | |
[14] | 赵晶晶, 许宏源, 李梓博, 等. 考虑分布式电源集群无功调节能力的配电网无功优化[J]. 现代电力, 2023, 40(3):419-426. |
ZHAO Jingjing, XU Hongyuan, LI Zibo, et al. Reactive power optimization of distribution network considering the reactive power regulation ability of distributed power generation cluster[J]. Modern Electric Power, 2023, 40(3):419-426. | |
[15] |
王义, 杨志伟, 吴坡, 等. 计及高比例分布式光伏能源接入的配电网状态估计[J]. 综合智慧能源, 2022, 44(10):12-18.
doi: 10.3969/j.issn.2097-0706.2022.10.002 |
WANG Yi, YANG Zhiwei, WU Po, et al. State estimation for the distribution network with high-proportion distributed photovoltaic energy[J]. Integrated Intelligent Energy, 2022, 44(10): 12-18.
doi: 10.3969/j.issn.2097-0706.2022.10.002 |
|
[16] | 冯子木, 孙国强, 滕德红, 等. 永磁直驱风电机组低电压穿越研究综述[J]. 电力工程技术, 2021, 40(2):75-85. |
FENG Zimu, SUN Guoqiang, TENG Dehong, et al. Reviews of LVRT technology for D-PMSG[J]. Electric Power Engineering Technology, 2021, 40(2): 75-85. | |
[17] | 李珠林, 李慧, 刘思嘉, 等. 基于MPCC-PIγDμ控制的直驱永磁风力发电系统[J]. 电力系统及其自动化学报, 2023, 35(5):1-10. |
LI Zhulin, LI Hui, LIU Sijia, et al. Direct-driven permanent magnet wind power generation system based on MPCC-PIγDμ control[J]. Proceedings of the CSU-EPSA, 2023, 35(5):1-10. | |
[18] | 于来宝, 谢兴旺. 基于AC强化学习的光伏发电系统MPPT控制[J/OL]. 电源学报:1-12(2023-04-10)[2023-06-07]. http://kns.cnki.net/kcms/detail/12.1420.tm.20230407.1443.002.html. |
YU Laibao, XIE Xingwang. MPPT Control of photovoltaic power generation system based on reinforcement learning[J/OL]. Journal of Power Supply, 1-12(2023-04-10)[2023-06-07]. http://kns.cnki.net/kcms/detail/12.1420.tm.20230407.1443.002.html. | |
[19] |
檀勤良, 郭明鑫, 刘源, 等. 基于大规模V2G的区域电源低碳优化策略[J]. 电力建设, 2022, 43(12):56-65.
doi: 10.12204/j.issn.1000-7229.2022.12.006 |
TAN Qinliang, GUO Minqxin, LIU Yuan, et al. Research on low-carbon optimization strategy of regional power supply based on large-scale V2G[J]. Electric Power Construction, 2022, 43(12):56-65.
doi: 10.12204/j.issn.1000-7229.2022.12.006 |
|
[20] | 欧阳森, 于业辉, 张真. 考虑负荷重要程度含DG中压配电网电压调控策略[J/OL]. 南方电网技术:1-11(2023-04-23)[2023-06-07]. http://kns.cnki.net/kcms/detail/44.1643.TK.20230423.1127.004.html. |
OUYANG Sen, YU Yehui, ZHANG Zhen. Voltage regulation strategy of medium voltage distribution network with DG considering the importance of load[J/OL]. Southern Power System Technology:1-11(2023-04-23)[2023-06-07]. http://kns.cnki.net/kcms/detail/44.1643.TK.20230423.1127.004.html. | |
[21] |
TANG Z, HILL D J, LIU T. Distributed coordinated reactive power control for voltage regulation in distribution networks[J]. IEEE Transactions on Smart Grid, 2020, 12(1): 312-323.
doi: 10.1109/TSG.5165411 |
[22] | 李飞宏, 肖迎群. 基于STL-LSTM-TCN模型的短期负荷预测方法[J]. 电子设计工程, 2023, 31(7):47-51,56. |
LI Feihong, XIAO Yingqun. Short-term load forecasting method based on STL-LSTM-TCN model[J]. Electronic Design Engineering, 2023, 31(7): 47-51,56. | |
[23] | 李岩, 刘鑫月, 乔俊杰, 等. 基于数据预处理和Bi-LSTM的智能电网预测方法[J/OL]. 电测与仪表:1-7(2023-02-14)[2023-06-07]. http://kns.cnki.net/kcms/detail/23.1202.TH.20230213.1658.008.html. |
LI Yan, LIU Xinyue, QIAO Junjie, et al. Smart grid forecasting method based on data preprocessing and Bi-LSTM[J/OL]. Electrical Measurement & Instrumentation:1-7(2023-02-14)[2023-06-07]. http://kns.cnki.net/kcms/detail/23.1202.TH.20230213.1658.008.html. | |
[24] |
葛磊蛟, 崔庆雪, 李明玮, 等. 面向低碳经济运行的新型电力系统态势感知技术综述[J]. 综合智慧能源, 2023, 45(1): 1-13.
doi: 10.3969/j.issn.2097-0706.2023.01.001 |
GE Leijiao, CUI Qingxue, LI Mingwei, et al. Review on situational awareness technology in a low-carbon oriented new power system[J]. Integrated Intelligent Energy, 2023, 45(1): 1-13.
doi: 10.3969/j.issn.2097-0706.2023.01.001 |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[3] | FENG Ji, YANG Guohua, SHI Lei, PAN Huan, LU Yuxiang, ZHANG Yuanxi, LI Zhen. Research on fault diagnosis of active distribution network based on parallel fusion deep residual shrinkage network [J]. Integrated Intelligent Energy, 2024, 46(6): 8-15. |
[4] | ZHU Weiwei, ZHU Qing, GAO Wensen, LIU Caihua, WANG Luze, LIU Zengji. Switching method for distribution network feeder automation system based on 5G communication delay [J]. Integrated Intelligent Energy, 2024, 46(5): 1-11. |
[5] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
[6] | DU Long, SHA Jianxiu, FAN Bei, HU Jingwei, LIU Zengji. Electricity theft detection method for distribution network CPS based on cyber and physical data [J]. Integrated Intelligent Energy, 2024, 46(5): 20-29. |
[7] | LI Yinuo, LIU Wei, WEI Xingshen, WANG Qi. Research on vulnerability of distribution networks with distributed photovoltaic under cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 50-57. |
[8] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[9] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[10] | YU Haibin, DONG Ye, WENG Jinde, HU Xinchen, YAN Wei, WU Difan. Research on the application and economic benefits of 5G slice in the urban distribution network [J]. Integrated Intelligent Energy, 2024, 46(1): 75-83. |
[11] | LI Fangyi, LI Nan, ZHOU Yan, XIE Wu. Prediction on the regional carbon emission factor for power generation based on multi-dimensional data and deep learning [J]. Integrated Intelligent Energy, 2023, 45(8): 11-17. |
[12] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. |
[13] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[14] | FANG Rui, DUAN Zhiyong, LIU Zaizhi, WANG Yuxuan, LIU Chenxi, LI Hao, FAN Chuigang. Review on marine litter treatment technologies [J]. Integrated Intelligent Energy, 2023, 45(5): 70-79. |
[15] | WU Xueqiong, XIA Dong. Review on intelligent planning and decision-making technology for the new active distribution network [J]. Integrated Intelligent Energy, 2023, 45(11): 20-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||