Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (11): 10-18.doi: 10.3969/j.issn.2097-0706.2024.11.002
• Optimized Operation and Control of Integrating Energy Systems • Previous Articles Next Articles
SHENG Ruixiang1,2(), ZHANG Xiaoyu1,2,*(
)
Received:
2024-06-17
Revised:
2024-08-05
Published:
2024-11-25
Contact:
ZHANG Xiaoyu
E-mail:wa22301052@stu.ahu.edu.cn;zhangxiaoyu@ahu.edu.cn
Supported by:
CLC Number:
SHENG Ruixiang, ZHANG Xiaoyu. Photovoltaic power forecasting model based on probabilistic TCN-Transformer[J]. Integrated Intelligent Energy, 2024, 46(11): 10-18.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.11.002
Table 2
Evaluation indicators of models
模型 | MAE/kW | MSE/(kW)2 | RMSE/kW | MAPE/% | |
---|---|---|---|---|---|
CNN | 0.818 | 3.432 | 1.853 | 0.943 | 56.72 |
TCN | 1.093 | 3.792 | 1.868 | 0.899 | 32.66 |
LSTM | 0.576 | 2.138 | 1.462 | 0.943 | 25.73 |
CNN-LSTM | 0.547 | 2.132 | 1.460 | 0.941 | 17.85 |
Transformer | 0.529 | 2.165 | 1.471 | 0.942 | 16.55 |
TCN-Transformer | 0.447 | 1.814 | 1.347 | 0.969 | 15.02 |
Table 3
Indicators for evaluating different weather
模型 | 天气 | MAE/kW | MSE/(kW)2 | RMSE/kW | MAPE/% | |
---|---|---|---|---|---|---|
CNN | 阴天 | 1.078 | 4.774 | 2.185 | 0.915 | 60.57 |
晴天 | 0.912 | 3.587 | 1.894 | 0.935 | 56.87 | |
TCN | 阴天 | 1.209 | 4.530 | 2.128 | 0.906 | 35.42 |
晴天 | 0.993 | 3.531 | 1.879 | 0.920 | 30.21 | |
LSTM | 阴天 | 0.759 | 2.554 | 1.598 | 0.917 | 27.47 |
晴天 | 0.633 | 1.266 | 1.125 | 0.976 | 25.58 | |
Transformer | 阴天 | 0.668 | 2.452 | 1.566 | 0.921 | 23.48 |
晴天 | 0.485 | 1.173 | 1.083 | 0.979 | 16.05 | |
TCN-Transformer | 阴天 | 0.732 | 1.889 | 1.374 | 0.931 | 19.98 |
晴天 | 0.447 | 1.014 | 1.006 | 0.980 | 15.02 |
[1] |
姚芳, 杨晓娜, 葛磊蛟, 等. 风-光-氢能源系统容量优化配置研究[J]. 综合智慧能源, 2022, 44(5):56-63.
doi: 10.3969/j.issn.2097-0706.2022.05.006 |
YAO Fang, YANG Xiaona, GE Leijiao, et al. Optimization of capacity allocation scheme for wind-solar-hydrogen energy system[J]. Integrated Intelligent Energy, 2022, 44(5): 56-63.
doi: 10.3969/j.issn.2097-0706.2022.05.006 |
|
[2] | 蔡源, 吴浩, 唐丹. 光伏发电功率预测方法综述[J]. 四川电力技术, 2024, 47(2):25-31. |
CAI Yuan, WU Hao, TANG Dan. Reviews of photovoltaic power prediction methods[J]. Sichuan Electric Power Technology, 2024, 47(2):25-31. | |
[3] | KUMARI P, TOSHNIWAL D. Deep learning models for solar irradiance forecasting: A comprehensive review[J]. Journal of Cleaner Production, 2021, 318: 128566. |
[4] |
倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3):197-202.
doi: 10.19912/j.0254-0096.tynxb.2020-0581 |
NI Chao, WANG Cong, ZHU Tingting, et al. Super-short-term forecast of solar irradiance based on CNN-Bi-LSTM[J]. Acta Energiae Solaris Sinica, 2022, 43(3):197-202.
doi: 10.19912/j.0254-0096.tynxb.2020-0581 |
|
[5] | AHMED R, SREERAM V, MISHRA Y, et al. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization[J]. Renewable and Sustainable Energy Reviews, 2020, 124: 109792. |
[6] |
杨帆, 申亚, 李东东, 等. 基于GA-GNNM的极地光伏发电功率预测方法[J]. 太阳能学报, 2022, 43(4):167-174.
doi: 10.19912/j.0254-0096.tynxb.2020-0768 |
YANG Fan, SHEN Ya, LI Dongdong, et al. Polar photovoltaic power forecasting method based on GA-GNNM[J]. Acta Energiae Solaris Sinica, 2022, 43(4):167-174.
doi: 10.19912/j.0254-0096.tynxb.2020-0768 |
|
[7] | LIU C C, LI M. YU Y J, et al. A review of multitemporal and multispatial scales photovoltaic forecasting methods[J]. IEEE Access, 2022, 10: 35073-35093. |
[8] | 吴峰, 王飞, 顾康慧, 等. 基于MEEMD-ARIMA模型的波浪能发电系统输出功率预测[J]. 电力系统自动化, 2021, 45(1):65-70. |
WU Feng, WANG Fei, GU Kanghui, et al. Output power prediction of wave energy generation system based on modified ensemble empirical mode decomposition-autoregressive integrated moving average model[J]. Automation of Electric Power Systems, 2021, 45(1):65-70. | |
[9] |
丁坤, 刘增泉, 张经炜, 等. 基于图像奇异值分解的局部遮挡光伏阵列输出特性建模研究[J]. 综合智慧能源, 2023, 45(2): 53-60.
doi: 10.3969/j.issn.2097-0706.2023.02.007 |
DING Kun, LIU Zengquan, ZHANG Jingwei, et al. Modeling for output characteristics of the partially occluded photovoltaic array based on image singular value decomposition[J]. Integrated Intelligent Energy, 2023, 45(2):53-60.
doi: 10.3969/j.issn.2097-0706.2023.02.007 |
|
[10] |
缪月森, 夏红军, 黄宁洁, 等. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67.
doi: 10.3969/j.issn.2097-0706.2024.04.008 |
MIAO Yuesen, XIA Hongjun, HUANG Ningjie, et al. Prediction on loads and photovoltaic output coefficients based on Informer[J]. Integrated Intelligent Energy, 2024, 46(4): 60-67.
doi: 10.3969/j.issn.2097-0706.2024.04.008 |
|
[11] | LINDBERG O, LINGFORS D, ARNQVIST J, et al. Day-ahead probabilistic forecasting at a co-located wind and solar power park in Sweden: trading and forecast verification[J]. Advances in Applied Energy, 2023, 9: 100120. |
[12] | 万灿, 崔文康, 宋永华. 新能源电力系统概率预测:基本概念与数学原理[J]. 中国电机工程学报, 2021, 41(19):6493-6509. |
WAN Can, CUI Wenkang, SONG Yonghua. Probabilistic forecasting for power systems with renewable energy sources: basic concepts and mathematical principles[J]. Proceedings of the CSEE, 2021, 41(19): 6493-6509. | |
[13] | GOLESTANEH F, PINSON P, GOOI H B. Very Short-term nonparametric probabilistic forecasting of renewable energy generation—With application to solar energy[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3850-3863. |
[14] | HUANG Q, WEI S Y. Improved quantile convolutional neural network with two-stage training for daily-ahead probabilistic forecasting of photovoltaic power[J]. Energy Conversion and Management, 2020, 220: 113085. |
[15] | GU B, SHEN H Q, LEI X H, et al. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method[J]. Applied Energy, 2021, 299: 117291. |
[16] | ZHANG X Y, WATKINS C, KUENZEL S. Multi-quantile recurrent neural network for feeder-level probabilistic energy disaggregation considering roof-top solar energy[J]. Engineering Applications of Artificial Intelligence, 2022, 110:104707. |
[17] | 吴永洪, 张智斌. 基于贝叶斯优化的CNN-GRU短期电力负荷预测[J]. 现代电子技术, 2023, 46(20):125-129. |
WU Yonghong, ZHANG Zhibin. CNN-GRU short-term power load forecasting based on Bayesian optimization[J]. Modern Electronics Technique, 2023, 46(20):125-129. | |
[18] | LIMOUNI T, YAAGOUBI R, BOUZIANE K, et al. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model[J]. Renewable Energy, 2023, 205:1010-1024. |
[19] | ZHANG M Y, HAN Y, WANG C Y et al. Ultra-short-term photovoltaic power prediction based on similar day clustering and temporal convolutional network with bidirectional long short-term memory model: A case study using DKASC data[J]. Applied Energy, 2024, 375:124085. |
[20] | 庞昊, 高金峰, 杜耀恒. 基于时间卷积网络分位数回归的短期负荷概率密度预测方法[J]. 电网技术, 2020, 44(4):1343-1350. |
PANG Hao, GAO Jinfeng,DU Yaoheng. A short-term load probability density prediction based on quantile regression of time convolution network[J]. Power System Technology, 2020, 44 (4): 1343-1350. | |
[21] | 陈禹帆, 温蜜, 张凯, 等. 基于相似日匹配及TCN-Attention的短期光伏出力预测[J]. 电测与仪表, 2022, 59(10):108-116. |
CHEN Yufan, WEN Mi, ZHANG Kai, et al. Short-term photovoltaic output forecasting based on similar day matching and TCN-Attention[J]. Electrical Measurement & Instrumentation, 2022, 59(10): 108- 116. | |
[22] |
XIANG X L, LI X Y, ZHANG Y L, et al. A short-term forecasting method for photovoltaic power generation based on the TCN-ECANet-GRU hybrid model[J]. Scientific Reports, 2024, 14(1):6744.
doi: 10.1038/s41598-024-56751-6 pmid: 38509109 |
[23] | LIN Y, KOPRINSKA I, RANA M. Temporal convolutional neural networks for solar power forecasting[C]// Proceedings of 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, 2020: 1-8. |
[24] | 崔京港, 王芳, 叶泽甫, 等. 基于QD和因果注意力TCN的光伏功率区间预测[J]. 太阳能学报, 2024, 45(3): 488-495. |
CUI Jinggang, WANG Fang, YE Zefu, et al. Photovoltaic power interval prediction based on QD and causal attention TCN[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 488-495. | |
[25] | KIM J, OBREGON J, PARK H, et al. Multi-step photovoltaic power forecasting using transformer and recurrent neural networks[J]. Renewable and Sustainable Energy Reviews, 2024, 200: 114479. |
[26] | TAO K J, ZHAO J H, TAO Y, et al. Operational day-ahead photovoltaic power forecasting based on transformer variant[J]. Applied Energy, 2024, 373: 123825. |
[27] | 王腾飞, 杨力, 孙龙, 等. 基于C-Transformer的光伏负荷预测方法[J/OL]. 微电子学与计算机,1-9(2024-07-22)[2024-08-01]. http://kns.cnki.net/kcms/detail/61.1123.TN.20240719.1609.006.html. |
WANG Tengfei, YANG Li, SUN Long, et al. Transformer based photovoltaic load prediction method[J/OL]. Microelectronics & Computer,1-9(2024-07-22)[2024-08-01]. http://kns.cnki.net/kcms/detail/61.1123.TN.20240719.1609.006.html. | |
[28] | 黄莉, 甘恒玉, 刘兴举, 等. 基于Transformer编码器的超短期光伏发电功率预测[J]. 智慧电力, 2024, 52(5):16-22,59. |
HUANG Li, GAN Hengyu, LIU Xingju, et al. Ultra-short-term photovoltaic power generation prediction based on trans-formerencoder[J]. Smart Power, 2024, 52(5):16-22,59. |
[1] | CHEN Yang, WENG Weijie, HUANG Jiangdong, ZOU Tao, JIANG Wei. Research on multi-path balancing topology based on transformers [J]. Integrated Intelligent Energy, 2024, 46(4): 68-77. |
[2] | ZHAO Guizhong, HUANG Miaohua. An information extraction method for electric power accidents based on BERT-BiLSTM-CRF model [J]. Integrated Intelligent Energy, 2024, 46(11): 19-28. |
[3] | XU Bo, WEI Yijun, DENG Fangming. Research on transformer fault diagnosis method based on improved TCN model [J]. Integrated Intelligent Energy, 2024, 46(11): 38-45. |
[4] | ZHANG Kao, HE Kailin, YANG Peihao. Research on power transformer fault diagnosis algorithm based on fuzzy reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(10): 48-55. |
[5] | WANG Lizhong, CHI Jianfei, DING Yeqiang, YAO Haiyan, TANG Zhipeng, WU Tongyu. Transformer fault diagnosis method based on NNTR-SMOTE and GA-XGBoost [J]. Integrated Intelligent Energy, 2024, 46(1): 84-93. |
[6] | XIAO Honglei, LIU Yi, XIA Hongjun, MIAO Yufeng, YU Xiaoling, YANG Haiqi. Oil-immersed transformer fault diagnosis method based on PCA and SSA-LightGBM [J]. Integrated Intelligent Energy, 2023, 45(3): 9-16. |
[7] | YIN Yuchen, LIU Yuhang, MA Yuanqian, LEI Yi. Integrated energy demand forecasting for the park based on the Transformer algorithm [J]. Integrated Intelligent Energy, 2023, 45(10): 61-69. |
[8] | LONG Sicheng, HUANG Zhihong. Research on fault diagnosis method of power transformers based on multi-scale extreme fusion network [J]. Integrated Intelligent Energy, 2022, 44(9): 78-83. |
[9] | WEI Jiadong, XU Fei, CAO Hui, MIAO Zhongjie, YE Changhui, ZHOU Niancheng. Intelligent perception platform for distribution transformers and its safety architecture based on IoT [J]. Huadian Technology, 2021, 43(1): 1-5. |
[10] |
WU Luming,XUE Mingjun,CHEN Qi,WANG Yongxu,TANG Zhiguo,CHEN Hongyan1,2.
一起电子互感器异常引发的复杂发展性故障分析及改进 |
[11] | CHEN Qing, GUO Peiyu, ZHOU Qing, WU Lihua. Key points to equipment selection for a centralized photovoltaic power station [J]. Huadian Technology, 2020, 42(12): 78-81. |
[12] |
ZHANG Wei1a,ZHOU Guopeng1b,WANG Yang1a,NI Hao1a,ZHONG Zhuhui2.
Analysis of an abnormal alarm of TV for a 220kV main transformer protection
[J]. Huadian Technology, 2019, 41(6): 23-26.
|
[13] |
WANG Zhe,GUO Xiao,XING Wu,HU Bing.
Research on characteristics and mechanism of transformer fifth harmonic under overexcitation condition
[J]. Huadian Technology, 2019, 41(5): 22-27.
|
[14] |
CUI Dianbin.
Design and implementation of generator/transformer protection device MMI and communication management unit
[J]. Huadian Technology, 2019, 41(4): 19-23.
|
[15] |
ZHANG Yonggang1, 2,WANG Yue3,YAO Liang1, 2,CHEN Qi1, 2.
Research on a differential current protection device for Tconnection lines
[J]. Huadian Technology, 2019, 41(2): 18-21.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||