Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (7): 12-22.doi: 10.3969/j.issn.2097-0706.2025.07.002
• Optimal Scheduling of Integrated Energy System • Previous Articles Next Articles
WU Guoliang1(), ZHENG Wen2,*(
), HE Ling1(
), WANG Lei1(
), HUANG Yuan2(
), LIU Junyong2(
)
Received:
2025-03-05
Revised:
2025-04-11
Published:
2025-07-25
Contact:
ZHENG Wen
E-mail:d156489@qq.com;xianxianjia061@163.com;x164898465@qq.com;hg1654956@qq.com;yuanhuang@scu.edu.cn;liujy@scu.edu.cn
Supported by:
CLC Number:
WU Guoliang, ZHENG Wen, HE Ling, WANG Lei, HUANG Yuan, LIU Junyong. Energy management strategy for smart commercial buildings considering electric vehicle charging patterns and building thermal inertia[J]. Integrated Intelligent Energy, 2025, 47(7): 12-22.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.07.002
Table 1
Smart commercial building parameters
备用发电机组 | 商业智能楼宇热惯性参数 | 储能设备 | 负荷 | 主网 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
参数 | 数值 | 参数 | 数值 | 参数 | 数值 | 参数 | 数值 | 参数 | 数值 | |||||
固定花费/ [美元·(kW·h)-1] | 8 | 热容/(J·℃-1) | 9×107 | 容量/(kW·h) | 100 | 上爬坡速率/kW | 40 | 最大交易功率/kW | 400 | |||||
上爬坡速率/kW | 40 | 墙体热阻/(℃·W-1) | 4×10-4 | 最小SOC/(kW·h) | 10 | 下爬坡速率/kW | 30 | |||||||
下爬坡速率/kW | 40 | 窗户透射率 | 0.9 | 充、放电功率/kW | 30 | |||||||||
可变花费/ [美元·(kW·h)-1] | 35 | 窗户热阻/(℃·W-1) | 2×10-4 | 充、放电效率 | 0.9 | |||||||||
初始SOC/(kW·h) | 50 |
Table 3
Daily operating revenue in various scenarios 美元
场景 | A1.B1.D1 | A1.B1.D2 | A1.B2.D1 | A1.B2.D2 | A1.B3.D1 | A1.B3.D2 | A2.B1.D1 | A2.B1.D2 | A2.B2.D1 |
---|---|---|---|---|---|---|---|---|---|
收益 | 12 760.0 | 12 348.1 | 16 319.6 | 15 907.6 | 10 863.2 | 10 531.8 | 12 683.6 | 12 458.3 | 16 098.5 |
场景 | A2.B2.D2 | A2.B3.D1 | A2.B3.D2 | A3.B1.D1 | A3.B1.D2 | A3.B2.D1 | A3.B2.D2 | A3.B3.D1 | A3.B3.D2 |
收益 | 16 159.4 | 10 596.4 | 11 984.8 | 11 864.5 | 11 358.7 | 15 987.6 | 15 394.8 | 9 876.1 | 9 548.6 |
[1] | SALAM R A, AMBER K P, RATYAL N I, et al. An overview on energy and development of energy integration in major south Asian countries: The building sector[J]. Energies, 2020, 13(21): 5776. |
[2] | 刘东林, 周霞, 戴剑丰, 等. 考虑虚拟储能的建筑综合能源系统双层优化调度策略[J/OL]. 上海交通大学学报, 1-27 (2024-06-25)[2025-04-01]. https://link.cnki.net/doi/10.16183/j.cnki.jsjtu.2024.036. |
LIU Donglin, ZHOU Xia, DAI Jianfeng, et al. Double layer optimization scheduling strategy for building integrated energy system considering virtual energy storage[J/OL]. Journal of Shanghai Jiao Tong University, 1-27 (2024-06-25)[2025-04-01]. https://link.cnki.net/doi/10.16183/j.cnki.jsjtu.2024.036. | |
[3] | GUO T T, LIU Y B, ZHAO J B, et al. A dynamic wavelet-based robust wind power smoothing approach using hybrid energy storage system[J]. International Journal of Electrical Power and Energy Systems, 2020, 116: 105579. |
[4] | LIU Y B, ZHAO J B, XU L X, et al. Online TTC estimation using nonparametric analytics considering wind power integration[J]. IEEE Transactions on Power Systems, 2019, 34(1): 494-505. |
[5] | KHAN M H, ASAR A U, ULLAH N, et al. Modeling and optimization of smart building energy management system considering both electrical and thermal load[J]. Energies, 2022, 15(2): 574. |
[6] | 陈心宜, 胡秦然, 石庆鑫, 等. 新型电力系统居民分布式资源管理综述[J]. 电力系统自动化, 2024, 48(5): 157-175. |
CHEN Xinyi, HU Qinran, SHI Qingxin, et al. Review on residential distributed energy resource management in new power system[J]. Automation of Electric Power Systems, 2024, 48(5): 157-175. | |
[7] | 陈亚临, 杨涌文, 赵一涵. 面向需求响应的电动汽车-充电桩负荷聚合调度优化策略[J]. 上海电力大学学报, 2024, 40(4): 309-314. |
CHEN Yalin, YANG Yongwen, ZHAO Yihan. Demand response-oriented electric vehicle-charging pile load aggregation scheduling optimization strategy[J]. Journal of Shanghai University of Electric Power, 2024, 40(4): 309-314. | |
[8] | 中国政府网. 图表:超3000万辆!我国新能源汽车保有量高速增长[EB/OL].(2025-01-17)[2025-04-01]. https://www.gov.cn/zhengce/jiedu/tujie/202501/content_69995 27.htm. |
[9] | 胡安妮, 张天策, 李庚银, 等. 考虑电动汽车参数一致性的虚拟电厂云边协同调度方法[J/OL]. 电力系统自动化, 1-13 (2025-03-13)[2025-04-01]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DLXT20250313001&dbname=CJFD&dbcode=CJFQ. |
HU Anni, ZHANG Tiance, LI Gengyin, et al. Cloud-edge collaborative scheduling method for virtual power plants considering consistency of electric vehicle parameters[J/OL]. Automation of Electric Power Systems, 1-13 (2025-03-13)[2025-04-01]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DLXT20250313001&dbname=CJFD&dbcode=CJFQ. | |
[10] | 姜晓锋, 魏巍, 王永灿, 等. 含电动汽车智慧楼宇的多时间尺度MPC能量管理策略[J]. 重庆理工大学学报(自然科学), 2023, 37(2): 260-271. |
JIANG Xiaofeng, WEI Wei, WANG Yongcan, et al. Multi-time scale MPC energy management strategy for smart buildings with electric vehicles[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(2): 260-271. | |
[11] | 胡寰宇, 艾欣, 胡俊杰, 等. 考虑电动汽车移动储能特性的智能楼宇群能量管理方法[J]. 电力自动化设备, 2022, 42(10): 227-235. |
HU Huanyu, AI Xin, HU Junjie, et al. Energy management method of smart building cluster considering mobile energy storage characteristics of electric vehicles[J]. Electric Power Automation Equipment, 2022, 42(10): 227-235. | |
[12] | 于浩, 沈运帷, 林顺富, 等. 考虑用户心理的商业楼宇集群能量共享优化策略[J]. 电网技术, 2022, 46(11): 4423-4436. |
YU Hao, SHEN Yunwei, LIN Shunfu, et al. Optimization strategies for energy sharing in commercial building clusters considering user psychology[J]. Power System Technology, 2022, 46(11): 4423-4436. | |
[13] |
李明, 胡楠, 刘鑫蕊. 考虑电动汽车公平性的虚拟电厂优化运行策略[J]. 综合智慧能源, 2025, 47(1): 70-78.
doi: 10.3969/j.issn.2097-0706.2025.01.009 |
LI Ming, HU Nan, LIU Xinrui. Optimal operation strategy of virtual power plants considering fairness for electric vehicles[J]. Integrated Intelligent Energy, 2025, 47(1): 70-78.
doi: 10.3969/j.issn.2097-0706.2025.01.009 |
|
[14] | 刘向向, 卢婕, 严勤, 等. 考虑热惯性的居民楼宇综合能源系统日前运行优化[J]. 可再生能源, 2020, 38(3): 409-415. |
LIU Xiangxiang, LU Jie, YAN Qin, et al. Day-ahead optimal operation of residential building integrated energy system considering thermal inertia[J]. Renewable Energy Resources, 2020, 38(3): 409-415. | |
[15] | 陈厚合, 吴桐, 李本新, 等. 考虑建筑热惯性的园区代理商电价策略及用能优化[J]. 电力系统自动化, 2021, 45(3): 148-156. |
CHEN Houhe, WU Tong, LI Benxin, et al. Electricity pricing strategy of park retailer and energy optimization considering thermal inertia of building[J]. Automation of Electric Power Systems, 2021, 45(3): 148-156. | |
[16] | 张风晓, 靳小龙, 穆云飞, 等. 融合虚拟储能系统的楼宇微网模型预测调控方法[J]. 中国电机工程学报, 2018, 38(15): 4420-4428, 4642. |
ZHANG Fengxiao, JIN Xiaolong, MU Yunfei, et al. Model predictive scheduling method for a building microgrid considering virtual storage system[J]. Proceedings of the CSEE, 2018, 38(15): 4420-4428, 4642. | |
[17] | 张浩鹏, 李泽宁, 薛屹洵, 等. 基于共享储能服务的智能楼宇双层优化配置[J]. 中国电机工程学报, 2025, 45(3): 899-911. |
ZHANG Haopeng, LI Zening, XUE Yixun, et al. Bi-level optimal configuration of intelligent buildings based on shared energy storage services[J]. Proceedings of the CSEE, 2025, 45(3): 899-911. | |
[18] | 李天阳, 赵兴旺, 肖文举. 面向峰谷平衡的商业楼宇空调负荷调控技术[J]. 电力系统自动化, 2015, 39(17): 96-102. |
LI Tianyang, ZHAO Xingwang, XIAO Wenju. Regulation technology of air-conditioning load in commercial buildings for balance of power grid peak and valley[J]. Automation of Electric Power Systems, 2015, 39(17): 96-102. | |
[19] | 王旭东, 吴莉萍, 戚艳, 等. 基于模型预测控制的智能楼宇暖通空调能量管理策略[J]. 电力系统及其自动化学报, 2019, 31(6): 98-106. |
WANG Xudong, WU Liping, QI Yan, et al. Energy management strategy for heating, ventilation and air conditioning in smart building based on model predictive control[J]. Proceedings of the CSU-EPSA, 2019, 31(6): 98-106. | |
[20] | KELMAN A, BORRELLI F. Bilinear model predictive control of a HVAC system using sequential quadratic programming[J]. IFAC Proceedings Volumes, 2011, 44(1): 9869-9874. |
[21] | 李晖, 刘栋, 秦继朔, 等. 考虑风光出力不确定性的新能源基地直流外送随机规划方法研究[J]. 电网技术, 2024, 48(7): 2795-2803. |
LI Hui, LIU Dong, QIN Jishuo, et al. Stochastic planning method for UHVDC transmission of renewable energy power base considering wind and photovoltaic output uncertainties[J]. Power System Technology, 2024, 48(7): 2795-2803. | |
[22] | 赵书强, 赵蓬飞, 韦子瑜, 等. 数据驱动下考虑多预测误差带信息的多场景随机优化调度[J]. 电力自动化设备, 2024, 44(11): 52-59. |
ZHAO Shuqiang, ZHAO Pengfei, WEI Ziyu, et al. Multi-scenario stochastic optimal scheduling considering multi-prediction error band information under data-driven[J]. Electric Power Automation Equipment, 2024, 44(11): 52-59. | |
[23] | 王皓, 艾芊, 甘霖, 等. 基于多场景随机规划和MPC的冷热电联合系统协同优化[J]. 电力系统自动化, 2018, 42(13): 51-58. |
WANG Hao, AI Qian, GAN Lin, et al. Collaborative optimization of combined cooling heating and power system based on multi-scenario stochastic programming and model predictive control[J]. Automation of Electric Power Systems, 2018, 42(13): 51-58. | |
[24] |
崔再岳, 杨扬, 王立地. 考虑负荷需求响应的配电网三相不平衡优化[J]. 综合智慧能源, 2025, 47(3): 92-101.
doi: 10.3969/j.issn.2097-0706.2025.03.009 |
CUI Zaiyue, YANG Yang, WANG Lidi. Three-phase unbalance optimization of distribution network considering load demand response[J]. Integrated Intelligent Energy, 2025, 47(3): 92-101.
doi: 10.3969/j.issn.2097-0706.2025.03.009 |
|
[25] |
刘静, 史梦鸽, 胡永锋. 含电池储能系统的智能楼宇多阶段能量管理策略[J]. 综合智慧能源, 2022, 44(3): 29-37.
doi: 10.3969/j.issn.2097-0706.2022.03.005 |
LIU Jing, SHI Mengge, HU Yongfeng. Multi-stage energy management strategy for smart buildings with BESS[J]. Integrated Intelligent Energy, 2022, 44(3): 29-37.
doi: 10.3969/j.issn.2097-0706.2022.03.005 |
|
[26] | 赵书强, 周靖仁, 李志伟, 等. 基于出行链理论的电动汽车充电需求分析方法[J]. 电力自动化设备, 2017, 37(8): 105-112. |
ZHAO Shuqiang, ZHOU Jingren, LI Zhiwei, et al. EV charging demand analysis based on trip chain theory[J]. Electric Power Automation Equipment, 2017, 37(8): 105-112. | |
[27] | 王灿, 李布略. 基于区块链技术的共享汽车商业模式探究[J]. 商展经济, 2023(21): 109-112. |
WANG Can, LI Bulue. Exploring the business models of car sharing based on blockchain technologies[J]. Trade Fair Economy, 2023(21): 109-112. | |
[28] | INUZUKA S, SHEN T L. Optimal energy consuming planning for a home-based microgrid with mobility constraint of electric vehicles and tractors[J]. Control Theory and Technology, 2021, 19(4): 465-483. |
[29] | 张彬桥, 张松甲, 冉远航, 等. 考虑风电条件风险的水火风联合调度模型及求解[J]. 太阳能学报, 2024, 45(4): 394-403. |
ZHANG Binqiao, ZHANG Songjia, RAN Yuanhang, et al. Hydro-thermal-wind co-scheduling model and solution method considering conditional risk of wind power[J]. Acta Energiae Solaris Sinica, 2024, 45(4): 394-403. | |
[30] | 宋云超, 王丹, 何伟, 等. 基于场景构建技术的含多种清洁能源微能源网多目标随机规划研究[J]. 电力系统保护与控制, 2021, 49(3): 20-31. |
SONG Yunchao, WANG Dan, HE Wei, et al. Research on multi-objective stochastic planning of a micro energy grid with multiple clean energy sources based on scenario construction technology[J]. Power System Protection and Control, 2021, 49(3): 20-31. |
[1] | LIANG Haiping, WANG Jinying. Research on day-ahead electricity market trading of photovoltaic and energy storage charging stations considering dual uncertainties [J]. Integrated Intelligent Energy, 2025, 47(5): 62-72. |
[2] | YANG Lijie, DENG Zhenyu, CHEN Zuoshuang, HUANG Chao, JIANG Meihui, ZHU Hongyu. Non-intrusive load identification for public buildings based on MSCNN-BiGRU-MLP model [J]. Integrated Intelligent Energy, 2025, 47(3): 23-31. |
[3] | ZHANG Dongdong, LI Fangning, LIU Tianhao. Key technologies for load forecasting in new power systems and their applications in diverse scenario [J]. Integrated Intelligent Energy, 2025, 47(3): 47-61. |
[4] | YUAN Xiaoke, SHEN Shilan, ZHANG Maosong, SHI Chenxu, YANG Lingxiao. Optimal scheduling of intelligent virtual power plants based on explainable reinforcement learning [J]. Integrated Intelligent Energy, 2025, 47(1): 1-9. |
[5] | SU Rui, WANG Xilong, JIANG Yan, SONG Chenhui. Scheduling planning for virtual power plants based on an improved cost allocation method [J]. Integrated Intelligent Energy, 2025, 47(1): 10-17. |
[6] | QU Qi, TENG Fei, GUO Yuxin, ZHANG Linxue. Distributed energy management of port integrated energy system considering computing power demands [J]. Integrated Intelligent Energy, 2025, 47(1): 42-50. |
[7] | HU Jiacheng, ZHANG Ning, CAO Yutong, HU Cungang. Load optimization scheduling decision for virtual power plants with distributed energy accessed [J]. Integrated Intelligent Energy, 2025, 47(1): 62-69. |
[8] | LI Ming, HU Nan, LIU Xinrui. Optimal operation strategy of virtual power plants considering fairness for electric vehicles [J]. Integrated Intelligent Energy, 2025, 47(1): 70-78. |
[9] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[10] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[11] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[12] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[13] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[14] | LYU Yongsheng, ZHANG Xiaoyu, WANG Xirong, GUO Peiqian. Application and prospect of federated learning in new power systems [J]. Integrated Intelligent Energy, 2024, 46(11): 54-64. |
[15] | FAN Pengcheng, ZHANG Yifan, YIN Wenqian, SHI Jiahao, YE Jilei. Energy storage capacity optimization of wind-PV-energy storage systems for buildings considering battery life loss [J]. Integrated Intelligent Energy, 2024, 46(11): 65-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||