Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (9): 51-59.doi: 10.3969/j.issn.2097-0706.2025.09.006
• Renewable Generation Forecasting and Uncertainty Quantification • Previous Articles Next Articles
SUN Shiqi(
), MA Gang*(
), XU Wenjun(
), LI Hao(
), MA Jian
Received:2025-03-26
Revised:2025-04-30
Published:2025-09-25
Contact:
MA Gang
E-mail:1335900761@qq.com;nnumg@njnu.edu.cn;1819387688@qq.com;221812050@njnu.edu.cn
Supported by:CLC Number:
SUN Shiqi, MA Gang, XU Wenjun, LI Hao, MA Jian. TimeGAN-based photovoltaic power prediction method under extreme weather events[J]. Integrated Intelligent Energy, 2025, 47(9): 51-59.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.09.006
Table 1
Grey relational analysis results of meteorological factors
| 区间 | 云量 | 相对湿度 | 环境温度 | 风速 | 气压 | 辐照度 |
|---|---|---|---|---|---|---|
| 0.1 | 0.312 4 | 0.225 2 | 0.344 3 | 0.381 4 | 0.183 1 | 0.684 2 |
| 0.2 | 0.363 3 | 0.258 1 | 0.471 4 | 0.502 1 | 0.208 7 | 0.736 4 |
| 0.3 | 0.495 2 | 0.287 4 | 0.572 3 | 0.592 1 | 0.216 4 | 0.771 9 |
| 0.4 | 0.567 1 | 0.291 5 | 0.593 6 | 0.645 2 | 0.263 2 | 0.819 2 |
| 0.5 | 0.600 4 | 0.345 3 | 0.645 3 | 0.697 2 | 0.298 8 | 0.832 3 |
| 0.6 | 0.628 4 | 0.378 9 | 0.691 4 | 0.739 3 | 0.313 1 | 0.858 2 |
| 0.7 | 0.661 1 | 0.482 1 | 0.725 6 | 0.754 5 | 0.328 4 | 0.890 1 |
| 0.8 | 0.699 8 | 0.531 4 | 0.748 4 | 0.788 2 | 0.357 9 | 0.901 3 |
| 0.9 | 0.725 3 | 0.559 0 | 0.761 2 | 0.791 7 | 0.389 1 | 0.910 4 |
| 1.0 | 0.746 7 | 0.574 1 | 0.777 5 | 0.813 1 | 0.393 5 | 0.923 7 |
| [1] |
张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47(3): 32-46.
doi: 10.3969/j.issn.2097-0706.2025.03.004 |
|
ZHANG Dongdong, SHAN Linke, LIU Tianhao. Review on the application of artificial intelligence in data mining and wind and photovoltaic power forecasting[J]. Integrated Intelligent Energy, 2025, 47(3): 32-46.
doi: 10.3969/j.issn.2097-0706.2025.03.004 |
|
| [2] | 龙小慧, 秦际赟, 张青雷, 等. 基于相似日聚类及模态分解的短期光伏发电功率组合预测研究[J]. 电网技术, 2024, 48(7): 2948-2957. |
| LONG Xiaohui, QIN Jiyun, ZHANG Qinglei, et al. Short-term photovoltaic power prediction study based on similar day clustering and modal decomposition[J]. Power System Technology, 2024, 48(7): 2948-2957. | |
| [3] | 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191. |
| ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191. | |
| [4] | 邓芳明, 刘涛, 王锦波, 等. 基于地基云图与气象因素多模态融合的光伏功率预测方法[J/OL]. 中国电机工程学报, 2025: 1-14(2025-02-21)[2025-03-20]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGDC20250220002&dbname=CJFD&dbcode=CJFQ. |
| DENG Fangming, LIU Tao, WANG Jinbo, et al. Research on photovoltaic power prediction based on multimodal fusion of ground cloud map and meteorological factors[J/OL]. Proceedings of the CSEE, 2025: 1-14(2025-02-21)[2025-03-20]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGDC20250220002&dbname=CJFD&dbcode=CJFQ. | |
| [5] |
张元曦, 杨国华, 杨娜, 等. 基于K-means聚类的LSTM-SVR-DE光伏功率组合预测[J]. 综合智慧能源, 2025, 47(2): 71-78.
doi: 10.3969/j.issn.2097-0706.2025.02.007 |
|
ZHANG Yuanxi, YANG Guohua, YANG Na, et al. Photovoltaic power prediction based on K-means clustering and the LSTM-SVR-DE model[J]. Integrated Intelligent Energy, 2025, 47(2): 71-78.
doi: 10.3969/j.issn.2097-0706.2025.02.007 |
|
| [6] | 王玉庆, 徐飞, 刘志坚, 等. 基于动态关联表征与图网络建模的分布式光伏超短期功率预测[J]. 电力系统自动化, 2023, 47(20): 72-82. |
| WANG Yuqing, XU Fei, LIU Zhijian, et al. Ultra-short-term power forecasting of distributed photovoltaic based on dynamic correlation characterization and graph network modeling[J]. Automation of Electric Power Systems, 2023, 47(20): 72-82. | |
| [7] | 臧海祥, 程礼临, 刘玲, 等. 基于数据驱动的太阳辐射估计和预测研究与展望[J]. 电力系统自动化, 2021, 45(11): 170-183. |
| ZANG Haixiang, CHENG Lilin, LIU Ling, et al. Research and prospect for data-driven estimation and prediction of solar radiation[J]. Automation of Electric Power Systems, 2021, 45(11): 170-183. | |
| [8] | 马原, 张雪敏, 甄钊, 等. 基于修正晴空模型的超短期光伏功率预测方法[J]. 电力系统自动化, 2021, 45(11): 44-51. |
| MA Yuan, ZHANG Xuemin, ZHEN Zhao, et al. Ultra-short-term photovoltaic power prediction method based on modified clear-sky model[J]. Automation of Electric Power Systems, 2021, 45(11): 44-51. | |
| [9] | 张筱辰, 朱金大, 杨冬梅, 等. 基于t-SNE流形学习与快速聚类算法的光伏逆变器故障预测技术[J]. 中国电力, 2020, 53(6): 41-47. |
| ZHANG Xiaochen, ZHU Jinda, YANG Dongmei, et al. Photovoltaic inverter fault prediction technology based on t-SNE manifold learning and fast clustering algorithm[J]. Electric Power, 2020, 53(6): 41-47. | |
| [10] | 梁志峰, 秦放, 崔方. “6·21”日环食对光伏发电及电网运行影响分析[J]. 电力系统自动化, 2021, 45(7): 1-7. |
| LIANG Zhifeng, QIN Fang, CUI Fang. Impact analysis of annular solar eclipse on June 21, 2020 in China on photovoltaic power generation and power grid operation[J]. Automation of Electric Power Systems, 2021, 45(7): 1-7. | |
| [11] | 刘洪波, 王铎皓, 石鹏, 等. 基于图神经网络的多光伏场站出力短期时-空预测[J]. 电网与清洁能源, 2025, 41(1): 89-96. |
| LIU Hongbo, WANG Duohao, SHI Peng, et al. Short term time-space prediction of multi-photovoltaic plant output based on graph neural network[J]. Power System and Clean Energy, 2025, 41(1): 89-96. | |
| [12] | LIU W C, MAO Z Z. Short-term photovoltaic power forecasting with feature extraction and attention mechanisms[J]. Renewable Energy, 2024, 226:120437. |
| [13] | ELISSAIOS S, EVANGELOS S, EFSTATHIOS S, et al. Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent long short-term memory models[J]. Renewable Energy, 2023, 216:118997. |
| [14] | 殷豪, 张铮, 丁伟锋, 等. 基于生成对抗网络和LSTM-CSO的少样本光伏功率短期预测[J]. 高电压技术, 2022, 48(11): 4342-4351. |
| YIN Hao, ZHANG Zheng, DING Weifeng, et al. Short-term prediction of small-sample photovoltaic power based on generative adversarial network and LSTM-CSO[J]. High Voltage Engineering, 2022, 48(11): 4342-4351. | |
| [15] | 肖白, 黄钰茹, 姜卓, 等. 数据匮乏场景下采用生成对抗网络的空间负荷预测方法[J]. 中国电机工程学报, 2020, 40(24): 7990-8001, 8236. |
| XIAO Bai, HUANG Yuru, JIANG Zhuo, et al. The method of spatial load forecasting based on the generative adversarial network for data scarcity scenarios[J]. Proceedings of the CSEE, 2020, 40(24): 7990-8001, 8236. | |
| [16] | 顾荣直, 田心如, 禹梁玉, 等. 江苏寒潮天气过程风险预评估方法研究[J]. 气象学报, 2024, 82(2): 247-256. |
| GU Rongzhi, TIAN Xinru, YU Liangyu, et al. Methodology in pre-assessment of the cold surge induced risks in Jiangsu province of China[J]. Acta Meteorologica Sinica, 2024, 82(2): 247-256. | |
| [17] | 王丽婕, 张青山, 郝颖, 等. 基于气象数据外推法和显著性分析的光伏自适应功率预测模型[J]. 太阳能学报, 2025, 46(2): 317-325. |
| WANG Lijie, ZHANG Qingshan, HAO Ying, et al. Photovoltaic adaptive power prediction model based on meteorological data extrapolation and significance analysis[J]. Acta Energiae Solaris Sinica, 2025, 46(2): 317-325. | |
| [18] | 郑珂, 王丽婕, 郝颖, 等. 基于数据集蒸馏的光伏发电功率超短期预测[J]. 中国电机工程学报, 2024, 44(13): 5196-5208. |
| ZHENG Ke, WANG Lijie, HAO Ying, et al. Ultra-short-term prediction of photovoltaic power based on dataset distillation[J]. Proceedings of the CSEE, 2024, 44(13): 5196-5208. | |
| [19] | 彭曙蓉, 陈慧霞, 孙万通, 等. 基于改进LSTM的光伏发电功率预测方法研究[J]. 太阳能学报, 2024, 45(11): 296-302. |
| PENG Shurong, CHEN Huixia, SUN Wantong, et al. Research on photovoitaic power prediction method based on improved lstm[J]. Acta Energiae Solaris Sinica, 2024, 45(11): 296-302. | |
| [20] | 卫志农, 马智刚, 陈胜, 等. 考虑光伏随机性的交直流混合配电网鲁棒机会约束安全域模型[J]. 中国电机工程学报, 2024, 44(6): 2208-2220. |
| WEI Zhinong, MA Zhigang, CHEN Sheng, et al. Robust chance-constrained security region model of AC/DC hybrid distribution network considering the uncertainty of photovoltaic generation[J]. Proceedings of the CSEE, 2024, 44(6): 2208-2220. | |
| [21] | CHEN C C, CHAI L, WANG Q L. Research on stacking ensemble method for day-ahead ultra-short-term prediction of photovoltaic power[J]. Renewable Energy, 2025, 238:121853. |
| [22] | 孔令国, 王嘉祺, 韩子娇, 等. 基于权重调节模型预测控制的风-光-储-氢耦合系统在线功率调控[J]. 电工技术学报, 2023, 38(15): 4192-4207. |
| KONG Lingguo, WANG Jiaqi, HAN Zijiao, et al. On-line power regulation of wind-photovoltaic-storage-hydrogen coupling system based on weight adjustment model predictive control[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4192-4207. | |
| [23] | YANG M, JIANG Y, ZHANG W, et al. Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints[J]. Renewable Energy, 2024, 237:121834. |
| [24] | ZHAO Y, WANG B, WANG S, et al. Photovoltaic power generation power prediction under major extreme weather based on VMD-KELM[J]. Energy Engineering, 2024, 121(12):3711-3733. |
| [1] | HUANGFU Chenmeng, RUAN Hebin, XU Junjun. Power regression prediction for wind turbines in multi-meteorological scenarios based on CEEMDAN-CNN-LSTM integration [J]. Integrated Intelligent Energy, 2025, 47(9): 38-50. |
| [2] | LI Zhen, YANG Guohua, ZHANG Yuanxi, MA Xin, YANG Na, LIU Haorui, MA Longteng. Hybrid prediction of photovoltaic power generation based on modal secondary decomposition and OOA-CNN-BiLSTM-Attention [J]. Integrated Intelligent Energy, 2025, 47(9): 28-37. |
| [3] | ZHAN Guohua, ZHANG Xianyong, WEI Shengying, ZHANG Xiaoshun, LI Li. A prediction method for power grid carbon emission factor based on T-Graphormer [J]. Integrated Intelligent Energy, 2025, 47(6): 30-36. |
| [4] | ZHANG Yuanxi, YANG Guohua, YANG Na, LI Zhen, MA Xin, LIU Haorui, NAN Shaoshuai. Photovoltaic power prediction based on K-means clustering and the LSTM-SVR-DE model [J]. Integrated Intelligent Energy, 2025, 47(2): 71-78. |
| [5] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
| [6] | LIAO Minle, HUANG Chongyang, DAI Chengcheng, LI Hualin, FAN Gaosong. Analysis method of electric energy substitution potential based on time series and BP neural network [J]. Integrated Intelligent Energy, 2022, 44(3): 38-43. |
| [7] | WANG Zhuorong, SHI Qingxin. Post-disaster restoration strategy of power distribution systems based on topology reconfiguration and distributed generation scheduling [J]. Integrated Intelligent Energy, 2022, 44(2): 29-34. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

