Huadian Technology ›› 2021, Vol. 43 ›› Issue (6): 47-54.doi: 10.3969/j.issn.1674-1951.2021.06.006
• Low-carbon Technical Economy • Previous Articles Next Articles
WU Tong1,2,3(), ZHANG Xingyu1, CHENG Xingxing2, SUN Rongfeng1, WANG Zhiqiang2, GENG Wenguang1, WANG Luyuan1,*, FENG Tai3
Received:
2021-06-01
Revised:
2021-06-10
Published:
2021-06-25
Contact:
WANG Luyuan
E-mail:wtlooper@163.com
CLC Number:
WU Tong, ZHANG Xingyu, CHENG Xingxing, SUN Rongfeng, WANG Zhiqiang, GENG Wenguang, WANG Luyuan, FENG Tai. Analysis and prediction of industrial carbon emission of Linyi City based on STIRPAT model[J]. Huadian Technology, 2021, 43(6): 47-54.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.06.006
Tab.4
Model coefficients
项目 | 非标准化系数 | 标准系数 | T检验统计值 | 显著性系数 | 共线性统计量 | ||
---|---|---|---|---|---|---|---|
回归系数 | 标准误差 | 容差 | 方差膨胀系数 | ||||
常数项 | -0.522 | 2.095 | -0.249 | 0.041 | |||
0.033 | 0.065 | 0.103 | 0.517 | 0.062 | 0.065 | 15.381 | |
0.113 | 0.039 | 0.297 | 2.864 | 0.035 | 0.238 | 4.207 | |
0.657 | 0.135 | 0.702 | 4.881 | 0.005 | 0.123 | 8.106 | |
0.006 | 0.204 | 0.004 | 0.028 | 0.067 | 0.149 | 6.708 | |
0.548 | 0.116 | 0.966 | 4.744 | 0.005 | 0.062 | 16.230 |
Tab.7
Predicted and actual values of carbon emission in Linyi City from 2009 to 2019
年份 | 碳排放量实际值/万t | 碳排放量预测值/万t | 误差/% |
---|---|---|---|
2009 | 3 666.19 | 3 826.29 | 4.30 |
2010 | 3 682.33 | 3 755.35 | 2.00 |
2011 | 3 899.33 | 3 967.43 | 1.70 |
2012 | 4 398.08 | 4 161.67 | -5.40 |
2013 | 4 883.81 | 4 799.55 | -1.70 |
2014 | 5 325.22 | 5 032.89 | -5.50 |
2015 | 4 242.59 | 4 305.67 | 1.50 |
2016 | 4 822.40 | 4 797.21 | -0.50 |
2017 | 4 579.60 | 4 691.59 | 2.40 |
2018 | 4 627.89 | 4 671.95 | 0.90 |
2019 | 4 235.07 | 4 238.17 | 0.07 |
Tab.8
Forecast results of the added value of industrial production in Linyi City from 2009 to 2019
年份 | 年度生产总值/ 亿元 | 工业占GDP 比重/% | 工业生产增加值/ 亿元 | |||
---|---|---|---|---|---|---|
实际值 | 预测值 | 实际值 | 预测值 | 实际值 | 预测值 | |
2009 | 1 977.10 | 1 977.10 | 42.60 | 42.60 | 842.24 | 842.24 |
2010 | 2 360.60 | 2 502.05 | 42.10 | 42.52 | 993.81 | 1 063.87 |
2011 | 2 642.90 | 2 682.08 | 41.40 | 41.31 | 1 094.16 | 1 107.96 |
2012 | 2 870.90 | 2 875.06 | 39.90 | 40.14 | 1 145.48 | 1 154.04 |
2013 | 3 175.60 | 3 081.93 | 38.80 | 39.01 | 1 232.13 | 1 202.26 |
2014 | 3 388.10 | 3 303.68 | 38.50 | 37.90 | 1 304.41 | 1 252.09 |
2015 | 3 599.40 | 3 541.38 | 37.30 | 36.83 | 1 342.57 | 1 304.29 |
2016 | 3 810.50 | 3 796.19 | 35.70 | 35.79 | 1 360.34 | 1 358.65 |
2017 | 4 062.00 | 4 069.34 | 35.40 | 34.77 | 1 437.98 | 1 414.90 |
2018 | 4 367.80 | 4 362.13 | 34.80 | 33.79 | 1 519.99 | 1 473.96 |
2019 | 4 600.30 | 4 676.00 | 31.00 | 32.83 | 1 426.09 | 1 535.13 |
Tab.9
Forecast results of per capita industrial production added value in Linyi City from 2020 to 2030
年份 | 工业生产增加值预测值/亿元 | 工业平均用工人数/人 | 人均工业生产增加值预测值/(万元·人-1) |
---|---|---|---|
2020 | 1 599.17 | 393 000 | 40.69 |
2021 | 1 665.71 | 393 000 | 42.38 |
2022 | 1 735.02 | 393 000 | 44.14 |
2023 | 1 807.21 | 391 086 | 46.21 |
2024 | 1 882.41 | 364 737 | 51.61 |
2025 | 1 960.73 | 340 109 | 57.65 |
2026 | 2 042.31 | 317 227 | 64.38 |
2027 | 2 127.29 | 295 826 | 71.91 |
2028 | 2 215.81 | 275 907 | 80.31 |
2029 | 2 308.00 | 257 302 | 89.70 |
2030 | 2 404.03 | 239 971 | 100.18 |
Tab.11
Prediction of industrial carbon emission under six scenarios from 2020 to 2030 万t
年份 | 情景1 | 情景2 | 情景3 | 情景4 | 情景5 | 情景6 |
---|---|---|---|---|---|---|
2020 | 4 161.48 | 4 239.65 | 4 339.88 | 4 247.66 | 4 351.58 | 4 259.12 |
2021 | 4 080.24 | 4 245.05 | 4 437.60 | 4 251.02 | 4 461.57 | 4 273.99 |
2022 | 4 001.04 | 4 251.03 | 4 538.10 | 4 254.92 | 4 574.93 | 4 289.45 |
2023 | 3 924.13 | 4 257.96 | 4 641.88 | 4 259.74 | 4 692.17 | 4 305.89 |
2024 | 3 853.18 | 4 269.90 | 4 753.68 | 4 269.64 | 4 818.15 | 4 327.55 |
2025 | 3 783.91 | 4 282.45 | 4 868.87 | 4 280.18 | 4 948.21 | 4 349.93 |
2026 | 3 716.25 | 4 301.60 | 4 987.55 | 4 291.34 | 5 082.50 | 4 373.05 |
2027 | 3 650.17 | 4 319.39 | 5 109.90 | 4 303.19 | 5 221.23 | 4 396.95 |
2028 | 3 585.60 | 4 337.83 | 5 236.05 | 4 315.73 | 5 364.57 | 4 421.66 |
2029 | 3 522.51 | 4 308.94 | 5 366.18 | 4 329.00 | 5 512.72 | 4 447.23 |
2030 | 3 460.84 | 4 284.74 | 5 500.45 | 4 343.03 | 5 665.90 | 4 473.67 |
[1] | 姜克隽, 胡秀莲, 庄幸, 等. 中国2050年低碳情景和低碳发展之路[J]. 中外能源, 2009,6(6):21-26. |
JIANG Kejun, HU Xiulian, ZHUANG Xing, et al. China's low-carbon scenarios and roadmap for 2050[J]. Sino-Global Energy, 2009,6(6):21-26. | |
[2] | 佟昕, 陈凯, 李刚. 中国碳排放影响因素分析和趋势预测:基于STIRPAT和GM(1,1)模型的实证研究[J]. 东北大学学报(自然科学版), 2015,36(2):297-300. |
TONG Xin, CHEN Kai, LI Gang. Influencing factors analysis and trend forecasting of China's carbon emissions:Empirical study based on STIRPAT and GM(1,1) models[J]. Journal of Northeastern University (Natural Science), 2015,36(2):297-300. | |
[3] | 渠慎宁, 郭朝先. 基于STIRPAT模型的中国碳排放峰值预测研究[J]. 中国人口·资源与环境, 2010,20(12):10-15. |
QU Shenning, GUO Chaoxian. Forecast of China's carbon emissions based on STIRPAT model[J]. China Population, Resources and Environment, 2010,20(12):10-15. | |
[4] | 许华, 王莹. EKC视角下陕西经济增长与碳排放量实证研究[J]. 调研世界, 2021(1):54-59. |
XU Hua, WANG Ying. An empirical research on economic growth and carbon emissions of Shaanxi Province from the perspective of EKC[J]. The World of Survey and Research, 2021(1):54-59. | |
[5] | 颜伟, 黄亚茹, 张晓莹, 等. 基于STIRPAT模型的山东半岛蓝色经济区碳排放预测[J]. 济南大学学报(自然科学版), 2021,35(2):125-131. |
YAN Wei, HUANG Yaru, ZHANG Xiaoying, et al. Prediction of carbon emission in Shandong Peninsula Blue Economic Zone based on STIRPAT model[J]. Journal of University of Jinan(Science and Technology), 2021,35(2):125-131 | |
[6] | 韩媛媛, 廖剑宇, 张旺, 等. 长沙市规模以上工业能耗碳排放测算与预测研究[J]. 国土与自然资源研究, 2017(5):46-50. |
HAN Yuanyuan, LIAO Jianyu, ZHANG Wang, et al. Calculation and prediction of carbon emission from industrial scale energy consumption in Changsha[J]. Territory & Natural Resources Study, 2017(5):46-50. | |
[7] | 张巍. 基于STIRPAT模型的陕西省工业碳排放量预测和情景分析[J]. 可再生能源, 2017,35(5):771-777. |
ZHANG Wei. Prediction and scenario analysis of industrial carbon emissions in Shaanxi Province based on STIRPAT model[J]. Renewable Energy Resources, 2017,35(5):771-777. | |
[8] | 解品磊. 基于LEAP模型的吉林省工业碳排放模拟研究及碳减排路径选择[D]. 长春:吉林大学, 2018. |
[9] | 郭晓芳. 遵义市规模以上工业能源消费碳排放测度及影响因素[J]. 贵州科学, 2020,38(6):57-63. |
GUO Xiaofang. Carbon emission from energy consumption of industries above designated size in Zunyi: Measurement and influencing factors[J]. Guizhou Science, 2020,38(6):57-63. | |
[10] | 王海静, 王红蕾. 基于STIRPAT模型的贵州省电力行业碳峰值预测[J]. 生产力研究, 2021(3):108-113. |
WANG Haijing, WANG Honglei. The electricity industry carbon peak forecast based on the STIRPAT model[J]. Productivity Research, 2021(3):108-113. | |
[11] | 王莉叶, 陈兴鹏, 庞家幸, 等. 基于LMDI的能源消费碳排放因素分解及情景分析——以兰州市为例[J]. 生态经济, 2019,35(9):38-44. |
WANG Liye, CHEN Xingpeng, PANG Jiaxing, et al. Decomposition and scenario analysis of carbon emission from energy consumption based on LMDI method: Taking Lanzhou as an example[J]. Ecological Economy, 2019,35(9):38-44. | |
[12] | 刘晓燕. 基于STIRPAT模型的工业能源消费碳排放影响因素分析[J]. 生态经济, 2019,35(3):27-31. |
LIU Xiaoyan. Study on influencing factors of carbon emissions from industrial energy consumption based on STIRPAT model[J]. Ecological Economy, 2019,35(3):27-31. | |
[13] | 田泽, 张怀婧, 黄萌萌, 等. 扬子江城市群工业能源碳排放与经济增长脱钩水平及驱动因素[J]. 资源与产业, 2020,22(6):29-36. |
TIAN Ze, ZHANG Huaijing, HUANG Mengmeng, et al. Decoupling level and driving factors of industrial energy carbon emission and economic growth in Yangzi River urban agglomeration[J]. Resources & Industries, 2020,22(6):29-36. | |
[14] | 马艳梅, 吴玉鸣. 山东省工业碳减排政策研究——基于空间效应视角[J]. 生态经济, 2019,35(7):39-43. |
MA Yanmei, WU Yuming. Policies for industrial carbon emission reduction in Shandong Province from the perspective of spatial effects[J]. Ecological Economy, 2019,35(7):39-43. | |
[15] | 邓光耀, 马蓉, 张忠杰. 中国各行业能源消费碳排放效应的分解研究[J]. 统计与决策, 2018,34(15):124-127. |
DENG Guangyao, MA Rong, ZHANG Zhongjie. Decomposition of carbon emission effect of energy consumption in China's various industries[J]. Statistics & Decision, 2018,34(15):124-127. | |
[16] |
EHRLICH P R, HOLDREN J P. Impact of population growth[J]. Science, 1971,171(3977):1212-1217.
doi: 10.1126/science.171.3977.1212 |
[17] | 杨楠, 李艳霞, 吕晨, 等. 唐山市钢铁行业碳排放核算及达峰预测[J]. 环境工程, 2020,38(11):44-52. |
YANG Nan, LI Yanxia, LV Chen, et al. Carbon emission accounting and peak forecasting of iron & steel industry in Tangshan[J]. Environmental Engineering, 2020,38(11):44-52. |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[3] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[4] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[5] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[6] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[7] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[8] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[9] | LI Bohang, LI Hongzhong, ZHANG Minyuan. Low-carbon economic dispatch of integrated energy systems considering load characteristics [J]. Integrated Intelligent Energy, 2023, 45(8): 72-79. |
[10] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[11] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[12] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[13] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[14] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[15] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||