Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (10): 32-39.doi: 10.3969/j.issn.2097-0706.2024.10.005
• Power Grid and AI • Previous Articles Next Articles
MA Gang1,2(), MA Jian2, YAN Yunsong1, CHEN Yonghua1, LAI Yening1, LI Zhukun1, TANG Jing1
Received:
2024-07-15
Revised:
2024-08-27
Accepted:
2024-09-13
Published:
2024-10-25
Supported by:
CLC Number:
MA Gang, MA Jian, YAN Yunsong, CHEN Yonghua, LAI Yening, LI Zhukun, TANG Jing. Decentralized voltage control of distribution network based on multi-agent reinforcement learning[J]. Integrated Intelligent Energy, 2024, 46(10): 32-39.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.10.005
[1] | 黄维维, 张安安, 敬佳佳, 等. 微电网电压/无功协调控制综述[J]. 电网与清洁能源, 2016, 32(3):50-57. |
HUANG Weiwei, ZHANG An'an, JING Jiajia, et al. An overview on micro‑grid voltage/reactive power coordinated control[J]. Power System and Clean Energy, 2016, 32(3):50-57. | |
[2] |
王林, 孔小民, 周忠玉, 等. 云储能模式下的配电网分布式光伏-储能无功优化方法[J]. 综合智慧能源, 2024, 46(6):44-53.
doi: 10.3969/j.issn.2097-0706.2024.06.006 |
WANG Lin, KONG Xiaomin, ZHOU Zhongyu, et al, Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode[J]. Integrated Intelligent Energy, 2024, 46(6):44-53.
doi: 10.3969/j.issn.2097-0706.2024.06.006 |
|
[3] |
林泓宏, 余涛, 张桂源, 等. 基于数据驱动的高比例新能源配电网无功优化算法[J]. 综合智慧能源, 2023, 45(11):10-19.
doi: 10.3969/j.issn.2097-0706.2023.11.002 |
LIN Honghong, YU Tao, ZHANG Guiyuan, et al. Data‑driven reactive power optimization algorithm for the distribution network with high proportion of renewable energy[J]. Integrated Intelligent Energy, 2023, 45(11):10-19.
doi: 10.3969/j.issn.2097-0706.2023.11.002 |
|
[4] | 李鹏, 姜磊, 王加浩, 等. 基于深度强化学习的新能源配电网双时间尺度无功电压优化[J]. 中国电机工程学报, 2023, 43(16):6255-6266. |
LI Peng, JIANG Lei, WANG Jiahao, et al. Optimization of dual‑time scale reactive voltage for distribution network with renewable energy based on deep reinforcement learning[J]. Proceedings of the CSEE, 2023, 43(16):6255-6266. | |
[5] | 郑许林, 袁源, 柏晶晶, 等. 分布式光伏无功电压主动支撑控制方法[J]. 可再生能源, 2023, 41(12):1685-1690. |
ZHENG Xulin, YUAN Yuan, BAI Jingjing, et al. Active support control method of distributed photovoltaic reactive power and voltage[J]. Renewable Energy Resources, 2023, 41(12):1685-1690. | |
[6] | 潘思蓉, 刘友波, 唐志远, 等. 含深度学习代理模型的有源配电网电压无功控制进化算法[J]. 电力系统保护与控制, 2022, 50(17):97-106. |
PAN Sirong, LIU Youbo, TANG Zhiyuan, et al. An evolutionary algorithm for Volt/Var control in an active distribution network with a deep learning surrogate mode[J]. Power System Protection and Control, 2022, 50(17):97-106. | |
[7] | DUAN J J, SHI D, DIAO R S, et al. deep‑reinforcement‑ learning‑based autonomous voltage control for power grid operations[J]. IEEE Transactions on Power Systems, 2020, 35(1):814-817. |
[8] | 邵美阳, 吴俊勇, 石琛, 等. 基于数据驱动和深度置信网络的配电网无功优化[J]. 电网技术, 2019, 43(6):1874-1885. |
SHAO Meiyang, WU Junyong, SHI Chen, et al. Reactive power optimization of distribution network based on data driven and deep belief network[J]. Power System Technology, 2019, 43(6):1874-1885. | |
[9] | ZHANG Y, WAN X N, WANG J H, et al. Deep reinforcement learning based Volt-VAR optimization in smart distribution systems[J]. IEEE Transactions on Smart Grid, 2021. 12(1): 361-371. |
[10] |
史景坚, 周文涛, 张宁, 等. 含储能系统的配电网电压调节深度强化学习算法[J]. 电力建设, 2020, 41(3):71-78.
doi: 10.3969/j.issn.1000-7229.2020.03.009 |
SHI Jingjian, ZHOU Wentao, ZHANG Ning, et al. Deep reinforcement learning algorithm of voltage regulation in distribution network with energy storage system[J]. Electric Power Construction, 2020, 41(3):71-78.
doi: 10.3969/j.issn.1000-7229.2020.03.009 |
|
[11] | FERREIRA L R, AOKI A R, LAMBERT-TORRES G. A reinforcement learning approach to solve service restoration and load management simultaneously for distribution networks[J]. IEEE Access, 2019,7:145978-145987. |
[12] | 张志荣, 邱晓燕, 孙旭, 等. 基于ADMM的交直流混合配电网分布式电压优化模型[J]. 电网技术, 2021, 45(11):4551-4559. |
ZHANG Zhirong, QIU Xiaoyan, SUN Xu, et al. Distributed voltage optimization model for AC/DC Hybrid distribution network based on ADMM[J]. Power System Technology, 2021, 45(11):4551-4559. | |
[13] |
邓清唐, 胡丹尔, 蔡田田, 等. 基于多智能体深度强化学习的配电网无功优化策略[J]. 电工电能新技术, 2022, 41(2):10-20.
doi: 10.12067/ATEEE2103019 |
DENG Qingtang, HU Dan'er, CAI Tiantian, et al. Reactive power optimization strategy of distribution network based on multi agent deep reinforcement learning[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(2):10-20.
doi: 10.12067/ATEEE2103019 |
|
[14] | 张沛, 朱驻军, 谢桦. 基于深度强化学习近端策略优化的电网无功优化方法[J]. 电网技术, 2023, 47(2):562-572. |
ZHANG Pei, ZHU Zhujun, XIE Hua. Reactive power optimization based on proximal policy optimization of deep reinforcement learning[J]. Power System Technology, 2023, 47(2):562-572. | |
[15] | LIU H T, WU W C. Online multi‑agent reinforcement learning for decentralized inverter‑based Volt-VAR control[J]. IEEE Transactions on Smart Grid, 2021, 12(4):2980-2990. |
[16] | 刘硕, 冯斌, 郭创新, 等. 考虑自注意力和时序记忆的深度强化学习配电网无功电压控制策略[J/OL]. 中国电机工程学报,(2023-10-09)[2024-05-06]. http://kns.cnki.net/kcms/detail/11.2107.tm.20231007.1822.004.html. |
LIU Shuo, FENG Bin, GUO Chuangxin, et al. Volt-Var control strategy of distribution network based on deep reinforcement learning considering self‑attention and temporal‑memory[J/OL]. Proceedings of the CSEE,(2023-10-09)[2024-05-06]. http://kns.cnki.net/kcms/detail/11.2107.tm.20231007.1822.004.html. | |
[17] | KABIRI R, HOLMES D G, MCGRATH B P, et al. LV grid voltage regulation using transformer electronic tap changing, with PV inverter reactive power injection[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(4):1182-1192. |
[18] |
王康平, 张兴科, 刘财华, 等. 基于自适应下垂控制的风电场无功电压控制策略[J]. 综合智慧能源, 2022, 44(4):12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002 |
WANG Kangping, ZHANG Xingke, LIU Caihua, et al. Reactive power and voltage control strategy based on adaptive droop control for wind power plants[J]. Integrated Intelligent Energy, 2022, 44(4):12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002 |
|
[19] | 郑晓莹, 陈政轩, 曾琮. 含分布式电源的配电网双层分区调压策略[J]. 电力系统保护与控制, 2021, 49(6):90-97. |
ZHENG Xiaoying, CHEN Zhengxuan, ZENG Cong. Double‑layer partition voltage regulation strategy of a distribution network with distributed generation[J]. Power System Protection and Control, 2021, 49(6):90-97. | |
[20] |
刘朝阳, 穆朝絮, 孙长银. 深度强化学习算法与应用研究现状综述[J]. 智能科学与技术学报, 2020, 2(4):314-326.
doi: 10.11959/j.issn.2096-6652.202034 |
LIU Zhaoyang, MU Chaoxu, SUN Changyin. An overview on algorithms and applications of deep reinforcement learning[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4):314-326. |
[1] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[2] | FENG Ji, YANG Guohua, SHI Lei, PAN Huan, LU Yuxiang, ZHANG Yuanxi, LI Zhen. Research on fault diagnosis of active distribution network based on parallel fusion deep residual shrinkage network [J]. Integrated Intelligent Energy, 2024, 46(6): 8-15. |
[3] | ZHU Weiwei, ZHU Qing, GAO Wensen, LIU Caihua, WANG Luze, LIU Zengji. Switching method for distribution network feeder automation system based on 5G communication delay [J]. Integrated Intelligent Energy, 2024, 46(5): 1-11. |
[4] | DU Long, SHA Jianxiu, FAN Bei, HU Jingwei, LIU Zengji. Electricity theft detection method for distribution network CPS based on cyber and physical data [J]. Integrated Intelligent Energy, 2024, 46(5): 20-29. |
[5] | LI Yinuo, LIU Wei, WEI Xingshen, WANG Qi. Research on vulnerability of distribution networks with distributed photovoltaic under cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 50-57. |
[6] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[7] | YU Haibin, DONG Ye, WENG Jinde, HU Xinchen, YAN Wei, WU Difan. Research on the application and economic benefits of 5G slice in the urban distribution network [J]. Integrated Intelligent Energy, 2024, 46(1): 75-83. |
[8] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. |
[9] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[10] | LIN Honghong, YU Tao, ZHANG Guiyuan, ZHANG Xiaoshun. Data-driven reactive power optimization algorithm for the distribution network with high proportion of renewable energy [J]. Integrated Intelligent Energy, 2023, 45(11): 10-19. |
[11] | WU Xueqiong, XIA Dong. Review on intelligent planning and decision-making technology for the new active distribution network [J]. Integrated Intelligent Energy, 2023, 45(11): 20-26. |
[12] | ZHENG Zhen, ZHU Feng, MA Xiaoli, TIAN Shuxin, JIANG Haozhe. Short-term new energy power prediction based on TL-LSTM [J]. Integrated Intelligent Energy, 2023, 45(1): 41-48. |
[13] | HU Zuyuan, JIN Xianlin, TAN Yazhi, FAN Jingyi. Optimized configuration of distributed photovoltaic and energy storage system based on improved particle swarm algorithm [J]. Integrated Intelligent Energy, 2023, 45(1): 49-57. |
[14] | HUA Yongzhu, XIE Qiangqiang, QIN Huibin, SHAO Lihuan, CUI Jiadong. Adaptive voltage regulation strategy for inverter air conditioners considering the regulation capacity on user side [J]. Integrated Intelligent Energy, 2022, 44(2): 21-28. |
[15] | ZHANG Xiaorui, JI Ling, FAN Zhongming. Research on the new power distribution IoT operation and maintenance technology based on cloud-edge collaboration [J]. Integrated Intelligent Energy, 2022, 44(12): 25-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||