Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (7): 23-31.doi: 10.3969/j.issn.2097-0706.2025.07.003
• Game Theory and Electricity Market Decision-Making • Previous Articles Next Articles
QIN Xiaodong1(), SONG Ruijun1(
), LYU Jie1, ZHOU Wenqi1, YAO Peng2(
), WEI Shangshang3,*(
)
Received:
2025-02-12
Revised:
2025-03-10
Published:
2025-07-25
Contact:
WEI Shangshang
E-mail:qxdnj@foxmail.com;398449801@qq.com;115953864@qq.com;weishsh@hhu.edu.cn
Supported by:
CLC Number:
QIN Xiaodong, SONG Ruijun, LYU Jie, ZHOU Wenqi, YAO Peng, WEI Shangshang. Research on an optimization method for suppressing active power fluctuations in wind farms based on model predictive control[J]. Integrated Intelligent Energy, 2025, 47(7): 23-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.07.003
[1] | 许昌, 钟淋涓. 风电场规划与设计[M]. 北京: 中国水利水电出版社, 2014. |
[2] |
赵建立, 向佳霓, 王隗东, 等. 考虑风电不确定性的数据中心平抑风电功率波动的调度方法[J]. 综合智慧能源, 2022, 44(11): 70-78.
doi: 10.3969/j.issn.2097-0706.2022.11.010 |
ZHAO Jianli, XIANG Jiani, WANG Weidong, et al. A scheduling method for suppressing wind power fluctuation of data centers considering wind power uncertainty[J]. Integrated Intelligent Energy, 2022, 44(11): 70-78.
doi: 10.3969/j.issn.2097-0706.2022.11.010 |
|
[3] | 蔡旭, 李征. 风电机组与风电场的动态建模[M]. 北京: 科学出版社, 2016. |
[4] | 李红菊, 林亮, 石双龙. 风电场的随机优化模型及其混合智能算法[J]. 华电技术, 2009, 31(12): 73-76. |
LI Hongju, LIN Liang, SHI Shuanglong. Stochastic optimization model and its hybrid intelligent algorithm for wind power station[J]. Huadian Technology, 2009, 31(12): 73-76. | |
[5] | 张三洪, 党杰, 戴剑丰, 等. 考虑最优转速与桨距角控制的风电场限功率优化控制策略[J]. 电网技术, 2021, 45(5): 1844-1851. |
ZHANG Sanhong, DANG Jie, DAI Jianfeng, et al. Optimal control strategy for wind power curtailment considering optimal speed and pitch angle control[J]. Power System Technology, 2021, 45(5): 1844-1851. | |
[6] | 杜强. 计及系统备用约束的风电场功率优化控制研究[J]. 电气自动化, 2022, 44(2): 15-17. |
DU Qiang. Research on wind farm power optimal control considering system reserve constraints[J]. Electrical Automation, 2022, 44(2): 15-17. | |
[7] | KING J, FLEMING P, KING R, et al. Control-oriented model for secondary effects of wake steering[J]. Wind Energy Science, 2021, 6(3): 701-714. |
[8] | ZHANG J C, ZHAO X W. A novel dynamic wind farm wake model based on deep learning[J]. Applied Energy, 2020, 277: 115552. |
[9] | JENSEN N O. A note on wind generator interaction: Risø-M-2411[R]. Roskilde: Risø National Laboratory, 1983. |
[10] | FRANDSEN S, BARTHELMIE R, PRYOR S, et al. Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind Energy, 2006, 9(1/2): 39-53. |
[11] | BASTANKHAH M, PORTÉ-AGEL F. A new analytical model for wind-turbine wakes[J]. Renewable Energy, 2014, 70: 116-123. |
[12] | MARTÍNEZ-TOSSAS L A, ANNONI J, FLEMING P A, et al. The aerodynamics of the curled wake: A simplified model in view of flow control[J]. Wind Energy Science, 2019, 4(1): 127-138. |
[13] | 王晰, 苏开元, 谢小荣. 面向海上风电高效利用的水下抽水蓄能建模与控制[J]. 电网技术, 2024, 48(10): 4167-4174. |
WANG Xi, SU Kaiyuan, XIE Xiaorong. Modeling and control of underwater pumped hydro storage for offshore wind power utilization[J]. Power System Technology, 2024, 48(10): 4167-4174. | |
[14] | SINISCALCHI-MINNA S, BIANCHI F D, DE-PRADA-GIL M, et al. A wind farm control strategy for power reserve maximization[J]. Renewable Energy, 2019, 131: 37-44. |
[15] | PARK J, LAW K H. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[J]. Energy Conversion and Management, 2015, 101: 295-316. |
[16] | MARDEN J R, RUBEN S D, PAO L Y. A model-free approach to wind farm control using game theoretic methods[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1207-1214. |
[17] | DEL POZO GONZÁLEZ H, DOMÍNGUEZ-GARCÍA J L. Non-centralized hierarchical model predictive control strategy of floating offshore wind farms for fatigue load reduction[J]. Renewable Energy, 2022, 187: 248-256. |
[18] | KONG X B, MA L L, WANG C, et al. Large-scale wind farm control using distributed economic model predictive scheme[J]. Renewable Energy, 2022, 181: 581-591. |
[19] | VALI M, PETROVIĆ V, BOERSMA S, et al. Adjoint-based model predictive control for optimal energy extraction in waked wind farms[J]. Control Engineering Practice, 2019, 84: 48-62. |
[20] | 叶林, 陈超宇, 张慈杭, 等. 基于分布式模型预测控制的风电场参与AGC控制方法[J]. 电网技术, 2019, 43(9): 3261-3270. |
YE Lin, CHEN Chaoyu, ZHANG Cihang, et al. Wind farm participating in AGC based on distributed model predictive control[J]. Power System Technology, 2019, 43(9): 3261-3270. | |
[21] | ZHU X X, ZHANG Y S, LI J H, et al. Shared energy storage assists the grid-connected two-layer online optimization control strategy of wind farm groups[J]. Journal of Energy Storage, 2024, 99: 113237. |
[22] | MANSOURI A, MAGRI AEL, LAJOUAD R, et al. Wind energy based conversion topologies and maximum power point tracking: a comprehensive review and analysis[J]. e-Prime—advances in electrical engineering,electronics and energy, 2023, 6: 100351. |
[23] | JAVANSHIR N, PEKKINEN S, SANTASALO-AARNIO A, et al. Green hydrogen and wind synergy: Assessing economic benefits and optimal operational strategies[J]. International Journal of Hydrogen Energy, 2024, 83: 811-825. |
[24] | WEI S S, GAO X H, ZHANG Y, et al. An improved stochastic model predictive control operation strategy of integrated energy system based on a single-layer multi-timescale framework[J]. Energy, 2021, 235: 121320. |
[25] | GUO Y, KABAMBA P T, MEERKOV S M, et al. Quasilinear control of wind farm power output[J]. IEEE Transactions on Control Systems Technology, 2015, 23(4):1555-1562. |
[1] | HUANG Linjie, XIE Zhishan, LIAO Yongxing, YIN Linfei. Noise reduction optimization of wind farms considering fatigue damage using a multi-layer feedforward neural network-sequential quadratic programming approach [J]. Integrated Intelligent Energy, 2025, 47(4): 23-32. |
[2] | ZHANG Huaqin, LIU Wei, WANG Hui, LI Leixiao, Sharengaowa. Multivariable integrated power control optimization of wind farms based on deep reinforcement learning [J]. Integrated Intelligent Energy, 2025, 47(1): 18-25. |
[3] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[4] | SHI Shengyao, JIANG Minglei, ZHANG Heyi, MA Kerui, WANG Ziqiang, MA Zhiqiang. Reactive power coordination control strategy for sending-end hybrid cascaded HVDC transmission system with high proportion of wind power integration [J]. Integrated Intelligent Energy, 2024, 46(11): 83-91. |
[5] | QIAN Da, CHEN Hao, MA Gang. Reactive power optimal scheduling of distribution network based on improved sine-cosine algorithm [J]. Integrated Intelligent Energy, 2024, 46(10): 40-47. |
[6] | LIN Honghong, YU Tao, ZHANG Guiyuan, ZHANG Xiaoshun. Data-driven reactive power optimization algorithm for the distribution network with high proportion of renewable energy [J]. Integrated Intelligent Energy, 2023, 45(11): 10-19. |
[7] | WANG Kangping, ZHANG Xingke, LIU Caihua, SHEN Xicheng, ZHOU Xia. Reactive power and voltage control strategy based on adaptive droop control for wind power plants [J]. Integrated Intelligent Energy, 2022, 44(4): 12-19. |
[8] | CHEN Yihui, LIN Lingqi, TIAN Xin, ZHANG Dongliang, WU Jun, LIU Zichen. Three-level wind power AVC coordinated control strategy [J]. Integrated Intelligent Energy, 2022, 44(4): 20-27. |
[9] | LIU Jing, SHI Mengge, HU Yongfeng. Multi-stage energy management strategy for smart buildings with BESS [J]. Integrated Intelligent Energy, 2022, 44(3): 29-37. |
[10] | ZHAO Jianli, XIANG Jiani, WANG Weidong, CHEN Ke, CHEN Jinjuzheng, WU Yingjun. A scheduling method for suppressing wind power fluctuation of data centers considering wind power uncertainty [J]. Integrated Intelligent Energy, 2022, 44(11): 70-78. |
[11] | WANG Zongheng, XIONG Hongtao, SHANG Lei. Study on half-wave and full-wave active power injection damping technology for photovoltaic power stations [J]. Huadian Technology, 2021, 43(9): 31-36. |
[12] |
CHEN Hongyan,TANG Zhiguo,CHEN Qi,WANG Yongxu,WU Luming.
Optimized method on distributed reactive power compensation in lowvoltage distribution network based on interval power flow calculation |
[13] |
XIE Jiaying,GUO Peng.
Deep neural network modeling on power curve based on multivariable selection |
[14] |
LIANG Weiping, NIU Botong.
Highvoltage motor power factor compensation based on nonlinear fitting
[J]. Huadian Technology, 2018, 40(6): 10-14.
|
[15] |
LI Mudan WANG Yinsong LI Yalingb.
Prediction for the probabilistic distribution parameters of wind speed based on Grey Model
[J]. Huadian Technology, 2018, 40(1): 1-4.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||