Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (11): 83-91.doi: 10.3969/j.issn.2097-0706.2024.11.010
• Optimized Operation and Control of Integrating Energy Systems • Previous Articles
SHI Shengyao1(), JIANG Minglei1, ZHANG Heyi2(
), MA Kerui1, WANG Ziqiang2, MA Zhiqiang2
Received:
2024-10-15
Revised:
2024-10-24
Published:
2024-11-25
Supported by:
CLC Number:
SHI Shengyao, JIANG Minglei, ZHANG Heyi, MA Kerui, WANG Ziqiang, MA Zhiqiang. Reactive power coordination control strategy for sending-end hybrid cascaded HVDC transmission system with high proportion of wind power integration[J]. Integrated Intelligent Energy, 2024, 46(11): 83-91.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.11.010
[1] | 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205. |
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205. | |
[2] | 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771. |
CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771. | |
[3] |
颜畅, 黄晟, 屈尹鹏. 面向碳中和的海上风电制氢技术研究综述[J]. 综合智慧能源, 2022, 44(5): 30-40.
doi: 10.3969/j.issn.2097-0706.2022.05.003 |
YAN Chang, HUANG Sheng, QU Yinpeng. Review on hydrogen production technology from offshore wind power to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(5): 30-40.
doi: 10.3969/j.issn.2097-0706.2022.05.003 |
|
[4] | 杨丹, 党杰, 邱威, 等. 祁韶特高压直流投运后湖南电网电压稳定问题[J]. 电力科学与技术学报, 2020, 35(6): 163-170. |
YANG Dan, DANG Jie, QIU Wei, et al. Study on voltage stability of Hunan power grid integrated with Qi-Shao UHVDC transmission line[J]. Journal of Electric Power Science and Technology, 2020, 35(6): 163-170. | |
[5] | XIN B A, GUO M Q, WANG S W, et al. Friendly HVDC transmission technologies for large-scale renewable energy and their engineering practice[J]. Automation of Electric Power Systems, 2021, 45(22):1-8. |
[6] | 毛安家, 马静, 蒯圣宇, 等. 高比例新能源替代常规电源后系统暂态稳定与电压稳定的演化机理[J]. 中国电机工程学报. 2020, 40(9): 2745-2755. |
MAO Anjia, MA Jing, KUAI Shengyu, et al. Evolution mechanism of transient and voltage stability for power system with high renewable penetration level[J]. Proceedings of the CSEE. 2020, 40(9): 2745-2755. | |
[7] |
林泓宏, 余涛, 张桂源, 等. 基于数据驱动的高比例新能源配电网无功优化算法[J]. 综合智慧能源, 2023, 45(11): 10-19.
doi: 10.3969/j.issn.2097-0706.2023.11.002 |
LIN Honghong, YU Tao, ZHANG Guiyuan, et al. Data-driven reactive power optimization algorithm for the distribution network with high proportion of renewable energy[J]. Integrated Intelligent Energy, 2023, 45(11): 10-19.
doi: 10.3969/j.issn.2097-0706.2023.11.002 |
|
[8] | 李东东, 高晓城, 孙梦显, 等. 考虑元件功率电压特性的混合馈入直流输电系统静态电压稳定分析[J]. 电网技术, 2021, 45(12): 4912-4921. |
LI Dongdong, GAO Xiaocheng, SUN Mengxian, et al. Steady-state voltage stability analysis of hybrid infeed HVDC system considering power and voltage characteristics of system components[J]. Power System Technology, 2021, 45(12): 4912-4921. | |
[9] | 尹纯亚, 李凤婷, 周识远, 等. 基于无功功率短路比的直流闭锁暂态过电压计算方法[J]. 电力系统自动化, 2019, 43(10): 150-154, 161. |
YIN Chunya, LI Fengting, ZHOU Shiyuan, et al. Calculation method of transient overvoltage due to DC blocking based on short circuit ratio of reactive power[J]. Automation of Electric Power Systems, 2019, 43(10): 150-154, 161. | |
[10] | 赵晋泉, 朱尧靓, 潘尔生, 等. 适用于大规模新能源接入直流送端电网的暂态压升严重性指标研究[J]. 南方电网技术, 2020, 14(12): 1-9. |
ZHAO Jinquan, ZHU Yaoliang, PAN Ersheng, et al. Study on transient voltage rise severity index for the high renewable power-penetrated UHVDC sending-end power grid[J]. Southern Power System Technology, 2020, 14(12): 1-9. | |
[11] | ZHANG L D, HARNEFORS L, NEE H P. Power-synchronization control of grid-connected voltage-source converters[J]. IEEE Transactions on Power Systems, 2010, 25(2): 809-820. |
[12] | ZHANG L D, HARNEFORS L, NEE H P. Interconnection of two very weak AC systems by VSC-HVDC links using power-synchronization control[J]. IEEE Transactions on Power Systems, 2011, 26(1): 344-355. |
[13] | 向往, 林卫星, 文劲宇, 等. 一种能够阻断直流故障电流的新型子模块拓扑及混合型模块化多电平换流器[J]. 中国电机工程学报, 2014, 34(29): 5171-5179. |
XIANG Wang, LIN Weixing, WEN Jinyu, et al. A new topology of sub-modules with DC fault current blocking capability and a new type of hybrid MMC converter[J]. Proceedings of the CSEE, 2014, 34(29): 5171-5179. | |
[14] | LIU Y, CHEN Z. A flexible power control method of VSC-HVDC link for the enhancement of effective short-circuit ratio in a hybrid multi-infeed HVDC system[J]. IEEE Transactions on Power Systems, 2013, 28(2):1568-1581. |
[15] | 李佳, 夏勇军, 严才, 等. 混合多馈入直流系统VSC-HVDC和滤波器的无功协调控制[J]. 电力自动化设备, 2021, 41(6): 100-107. |
LI Jia, XIA Yongjun, YAN Cai, et al. Reactive power coordinated control of VSC-HVDC and filter in hybrid multi-feed HVDC system[J]. Electric Power Automation Equipment, 2021, 41(6): 100-107. | |
[16] | 孙华东, 徐式蕴, 许涛, 等. 新能源多场站短路比定义及指标[J]. 中国电机工程学报, 2021, 41(2): 497-506. |
SUN Huadong, XU Shiyun, XU Tao, et al. Definition and index of short circuit ratio for multiple renewable energy stations[J]. Proceedings of the CSEE, 2021, 41(2): 497-506. | |
[17] | 刘杉, 李修一. 面向高比例新能源外送的送端混合级联型特高压直流输电方案[J]. 中国电机工程学报, 2021, 41(S1): 108-120. |
LIU Shan, LI Xiuyi. Scheme of sending end hybrid cascaded UHVDC for delivery of high-proportion renewable energy[J]. Proceedings of the CSEE, 2021, 41(S1): 108-120. | |
[18] | 孟沛彧, 向往, 迟永宁, 等. 一种适用于大规模新能源远距离外送的分层混联输电系统[J]. 中国电机工程学报, 2021, 41(10): 3349-3363, 3661. |
MENG Peiyu, XIANG Wang, CHI Yongning, et al. A hierarchical LCC-MMC hybrid transmission system for transmitting large-scale renewable power over long-distance[J]. Proceedings of the CSEE, 2021, 41(10): 3349-3363, 3661. | |
[19] | 刘江山, 李凤婷, 尹纯亚, 等. 换相失败引发送端混合级联直流系统换流母线暂态电压波动机理及抑制策略[J]. 电力系统保护与控制, 2023, 51(20): 36-46. |
LIU Jiangshan, LI Fengting, YIN Chunya, et al. Mechanism of and suppression strategy for transient voltage fluctuation in the commutator bus of a hybrid cascaded DC system caused by commutation failure[J]. Power System Protection and Control, 2023, 51(20): 36-46. | |
[20] | 秦艳辉, 尹纯亚, 段青熙, 等. 基于整流器无功功率控制的暂态电压抑制策略[J]. 太阳能学报, 2024, 45(8): 86-93. |
QIN Yanhui, YIN Chunya, DUAN Qingxi, et al. Transient voltage fluctuation suppression strategy based on rectifier reactive power control[J]. Acta Energiae Solaris Sinica, 2024, 45(8): 86-93. | |
[21] | 欧阳金鑫, 陈纪宇, 李昂, 等. 兼顾直流电压安全与无功支撑的柔性直流输电故障穿越控制[J]. 电工技术学报, 2024, 39(19): 6129-6144. |
OUYANG Jinxin, CHEN Jiyu, LI Ang, et al. Fault ride-through control method for VSC-HVDC balancing between DC voltage security and reactive power support[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 6129-6144. | |
[22] | 王炳辉, 黄天啸, 吴涛, 等. MMC柔性直流换流站无功级联控制策略[J]. 电力系统自动化, 2021, 45(5): 137-142. |
WANG Binghui, HUANG Tianxiao, WU Tao, et al. Reactive cascaded control strategy of MMC flexible DC converter station[J]. Automation of Electric Power Systems, 2021, 45(5): 137-142. |
[1] | WANG Xiaoyan, WU Shuquan. Research on capacity allocation for source-grid-load-storage systems based on improved PSO [J]. Integrated Intelligent Energy, 2024, 46(9): 28-36. |
[2] | FAN Yanbo, XIONG Yaxuan, LI Xiang, TIAN Xi, YANG Yang. Advancement in multi-objective optimization for building energy use based on genetic algorithms [J]. Integrated Intelligent Energy, 2024, 46(9): 69-85. |
[3] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[4] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[5] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[6] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[7] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[8] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[9] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[10] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[11] | BAI Zhang, HAO Wenjie, LI Qi, HAO hongliang, WEN Caifeng, GUO Su, HUANG Xiankun. Capacity configuration optimization of wind‒solar hydrogen production based on life cycle assessment [J]. Integrated Intelligent Energy, 2024, 46(10): 1-11. |
[12] | LI Mingyang, DONG Zhe. Pricing mechanism and optimal scheduling of virtual power plants containing distributed renewable energy and demand response loads [J]. Integrated Intelligent Energy, 2024, 46(10): 12-17. |
[13] | WU Qi, ZHAO Xuanming, ZHANG Jiacheng, QIU Zhifeng, WANG Yalin. Study on low-carbon demand response considering electricity-carbon price coupling [J]. Integrated Intelligent Energy, 2024, 46(10): 56-66. |
[14] | SHEN Mingzhong, Hu Xiaofu, SHEN Jianyong, HOU Pengfei. Analysis and research on carbon emission reduction from co-firing green ammonia in coal-fired power plants [J]. Integrated Intelligent Energy, 2024, 46(10): 67-72. |
[15] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||