Huadian Technology ›› 2021, Vol. 43 ›› Issue (10): 61-67.doi: 10.3969/j.issn.1674-1951.2021.10.007
• Topic Review • Previous Articles Next Articles
TAN Xuemei1(), LIU Shijie1(
), ZHAO Bing2(
), GONG Taiyi2(
), WANG Jialin2(
), HU Nan1(
)
Received:
2021-08-23
Revised:
2021-09-23
Published:
2021-10-25
CLC Number:
TAN Xuemei, LIU Shijie, ZHAO Bing, GONG Taiyi, WANG Jialin, HU Nan. Research on heat transfer of gas-solid two-phase flow in CFB boilers[J]. Huadian Technology, 2021, 43(10): 61-67.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.10.007
[1] | 吴占松, 马润, 汪展文. 流化态技术基础与应用[M]. 北京: 化学工业出版社, 2006. |
[2] | 魏捷. 论循环流化床锅炉技术现状及发展前景[J]. 南方农机, 2020, 51(7): 118. |
WEI Jie. Development of circulating fluidized bed boiler technology[J]. China Southern Agricultural Machinery, 2020, 51(7): 118. | |
[3] | 黄中, 杨娟, 车得福. 大容量循环流化床锅炉技术发展应用现状[J]. 热力发电, 2019, 48(6): 1-8. |
HUANG Zhong, YANG Juan, CHE Defu. Development and application of large capacity circulating fluidized bed boiler technology[J]. Thermal Power Generation, 2019, 48(6): 1-8. | |
[4] | 岳光溪, 吕俊复, 徐鹏, 等. 循环流化床燃烧发展现状及前景分析[J]. 中国电力, 2016, 49(1): 1-13. |
YUE Guangxi, LYU Junfu, XU Peng, et al. Development and prospect analysis of circulating fluidized bed combustion[J]. Electric Power. 2016, 49(1): 1-13. | |
[5] | 蔡润夏, 吕俊复, 凌文, 等. 超(超)临界循环流化床锅炉技术的发展[J]. 中国电力, 2016, 49(12): 1-7. |
CAI Runxia, LYU Junfu, LIN Wen, et al. Development of Super(super)criticality of circulating fluidized bed boiler technology[J]. Electric Powe, 2016, 49(12): 1-7. | |
[6] | 姚禹歌, 黄中, 张缦, 等. 中国循环流化床燃烧技术的发展与展望[J/OL]. 热力发电: 1-8(2021-07-08)[2021-09-15]. http://kns.cnki.net/kcms/detail/61.1111.TM.20210528.1721.002.html. |
YAO Yuge, HUANG Zhong, ZHANG Man, et al. Development and prospect of circulating fluidized bedcombustion technology in China[J/OL]. Thermal Power Generation: 1-8(2021-07-08)[2021-09-15]. http://kns.cnki.net/kcms/detail/61.1111.TM.20210528.1721.002.html. | |
[7] | 宋畅, 吕俊复, 杨海瑞, 等. 超临界及超超临界循环流化床锅炉技术研究与应用[J]. 中国电机工程学报, 2018, 38(2): 338-347. |
SONG Chang, LYU Junfu, YANG Hairui, et al. Research and application of supercritical and ultra-supercritical circulating fluidized bed boiler[J]. Proceedings of the CSEE, 2018, 38(2): 338-347. | |
[8] | 张瑞卿. 涵盖不同流型的气固床层与壁面换热研究[D]. 北京:清华大学, 2014. |
[9] | 吕俊复, 田勇, 彭晓峰, 等. 循环流化床内颗粒运动与换热分析[J]. 化工学报, 2003(9): 1224-1229. |
LYU Junfu, TIAN Yong, PENG Xiaofeng, et al. Analysis of particles motion and convection heat transfer in circulating fluidized bed[J]. Journal of Chemical Industry and Engineering, 2003(9): 1224-1229. | |
[10] |
WU R L, GRACE J R, LIM C J. A model for heat transfer in circulating fluidized beds[J]. Chemical Engineering Science, 1990, 45(12): 3389-3398.
doi: 10.1016/0009-2509(90)87144-H |
[11] |
NAG P K, NAWSHER M, MORAL A. Effect of probe size on heat transfer at the wall in circulating fluidized beds[J]. International Journal of Energy Research, 2010, 14(9): 965-974.
doi: 10.1002/(ISSN)1099-114X |
[12] | 高翔, 周劲松, 骆仲泱, 等. 气固两相流中颗粒运动强化器壁对流传热的机理[J]. 化工学报, 1998(3): 294-302. |
GAO Xiang, ZHOU Jingsong, LUO Zhongyang, et al. Mechanics of enhancement of convective heat transfer due to particle impact in gas-solid two phase flow[J]. Journal of Chemical Industry and Engineering, 1998(3): 294-302. | |
[13] | 武锦涛, 陈纪忠, 阳永荣. 移动床中颗粒接触传热的数学模型[J]. 化工学报, 2006(4): 719-725. |
WU Jingtao, CHEN Jizhong, YANG Yongrong. Model of contact heat transfer in granular moving bed[J]. Journal of Chemical Industry and Engineering, 2006(4): 719-725. | |
[14] | 刘传平, 李传, 李永亮, 等. 气固两相流强化传热研究进展[J]. 化工学报, 2014(7): 2485-2494. |
LIU Chuanping, LI Chuan, LI Yongliang, et al. Heat transfer enhancement in gas-solid flow[J]. Journal of Chemical Industry and Engineering, 2014(7): 2485-2494. | |
[15] | 郑莹, 赵亮, 张晟. 填充床气固传热系数的研究进展[J]. 冶金能源, 2019, 38(6): 10-13. |
ZHENG Ying, ZHAO Liang, ZHANG Sheng. Research progress of heat transfer coefficient in packed bed[J]. Energy for Metallurgical Industry, 2019, 38(6): 10-13. | |
[16] |
WU R L, GRACE J R, JIM C J, et al. Suspension to surface heat transfer in a circulating-fluidized-bed combustor[J]. AIChE journal, 1989, 35(10): 1685-1691.
doi: 10.1002/(ISSN)1547-5905 |
[17] | 程乐鸣, 骆仲泱, 倪明江, 等. 循环流化床辐射传热模型[J]. 中国电机工程学报, 2001(9): 100-104. |
CHENG Leming, LUO Zhongyang, NI Mingjiang, et al. Radiation heat transfer model of a circulating fluidized bed[J]. Proceedings of the CSEE, 2001(9): 100-104. | |
[18] | 吕俊复, 张建胜, 岳光溪, 等. 循环流化床锅炉燃烧室受热面传热系数计算方法[J]. 清华大学学报(自然科学版), 2000(2): 94-97. |
LYU Junfu, ZHANG Jiansheng, YUE Guangxi, et al. Calculation method of heat transfer coefficient of heating surface in combustion chamber of circulating fluidized bed boiler[J]. Journal of Tsinghua University(Science and Technology), 2000(2): 94-97. | |
[19] |
BOTTERILL J.S.M, TEOMAN Y, YÜREGIR K.R. Factors affecting heat transfer between gas-fluidized beds and immersed surfaces[J]. Powder Technology, 1984, 39(2): 177-189.
doi: 10.1016/0032-5910(84)85035-4 |
[20] |
CHEN C, CHEN K. Analysis of simultaneous radiative and conductive heat transfer in fluidized beds[J]. Chemical Engineering Communications, 1981, 9(1-6): 255-271.
doi: 10.1080/00986448108911027 |
[21] | 漆小波, 黄卫星, 祝京旭, 等. 循环流化床提升管中颗粒速度的径向分布及其沿轴向的发展[J]. 高校化学工程学报, 2002(2): 168-173. |
QI Xiaobo, HUANG Weixing, ZHU Jingxu, et al. Radial distribution and axial development of particle velocity in circulating fluidized bed[J]. Journal of Chemical Engineering of Chinese Universities, 2002(2): 168-173. | |
[22] |
ACHENBACH E. Heat and flow characteristics of packed beds[J]. Experimental Thermal and Fluid Science, 1995, 10(1): 17-27.
doi: 10.1016/0894-1777(94)00077-L |
[23] | 王焱鹏, 董群, 王立娟, 等. 循环流化床固-固换热系统传热规律[J]. 石化技术与应用, 2006(3): 191-193. |
WANG Yangpeng, DONG Qun, WANG Lijuan, et al. Heat transfer law of solid-solid system incirculating fluidized[J]. Petrochemical Technology and Application, 2006(3): 191-193. | |
[24] | 李金晶, 李燕, 吕俊复, 等. 循环流化床锅炉炉内传热的影响因素[J]. 清华大学学报(自然科学版), 2007(11): 2026-2030. |
LI Jinjing, LI Yan, LYU Junfu, et al. Factors affecting the heat transfer in a circulating fluidized bed[J]. Journal of Tsinghua University(Science and Technology), 2007(11): 2026-2030. | |
[25] | 黄卫星, 漆小波, 潘永亮, 等. 气固循环床提升管内的局部颗粒浓度及流动发展[J]. 高校化学工程学报, 2002(6): 626-631. |
HUANG Weixing, QI Xiaobo, PAN Yongliang, et al. Development and particle concentration of gas-solid circulating fluidized bed[J]. Journal of Chemical Engineering of Chinese Universities, 2002(6): 626-631. | |
[26] |
SMICKLEY H, TRILLING C. Heat transfer characteristics of fluidized beds[J]. Industrial and Engineering Chemistry Research, 1949, 41(6): 1135-1147.
doi: 10.1021/ie010605j |
[27] | HERB B. Distribution of solid concentration in circulating fluidized beds[J]. Fluidization IV, 1989:65-72. |
[28] | TUNG Y, LI J, KWAUK M. Radial voidage profiles in a fast fluidized bed[J]. Chemical Reaction Engineering and Technology, 1988(1): 75-81. |
[29] |
ZHANG W, TUNG Y, JOHNSSON J E. Radial voidage profiles in fast fluidized beds of different diameters[J]. Chemical Engineering Science, 1991, 46: 3045-3052.
doi: 10.1016/0009-2509(91)85008-L |
[30] | PATIENCE G S, CHAOUKI J. Solids hydrodynamics in the fully developed region of CFB risers[J]. Fluidisation VIII, 1995:33-40. |
[31] | 田子平, 钟志强, 陈永国, 等. 循环流化床中气固两相流动特性的可视化研究[J]. 热能动力工程, 2003(2): 120-124. |
TIAN Ziping, ZHONG Zhiqiang, CHEN Yongguo, et al. Study on visualization of gas-solid two-phase flow characteristics in circulating fluidized bed[J]. Journal of Engineering and Thermal Power, 2003(2): 120-124. | |
[32] | 杨磊. 循环流化床双床反应器中气固流动、流型及多尺度特性研究[D]. 湘潭:湘潭大学, 2018. |
[33] | 刘宝勇. 大型循环流化床底部区域气固两相流动特性研究[D]. 北京:中国石油大学, 2008. |
[34] |
EOLSSON S, ALMSTEDT A. Local instantaneous and time-averaged heat transfer in a pressurized fluidized bed with horizontal tubes:Influence of pressure,fluidization velocity and tube-bank geometry[J]. Chemical Engineering Science, 1995, 50(20): 3231-3245.
doi: 10.1016/0009-2509(95)00150-4 |
[35] |
PANKAJ K, PINAKESWAR M, UJJWAL K. Some studies on wall-to-bed heat transfer in a pressurized circulating fluidized bed unit[J]. Procedia Engineering, 2013, 56: 163-172.
doi: 10.1016/j.proeng.2013.03.103 |
[36] | THRING R. Fluidised bed combustion for the stirling engine[J]. Pergamon, 1977, 20(9): 911-918. |
[37] |
GUO Z, SUN Z, ZHANG N, et al. CFD analysis of fluid flow and particle to fluidheat transfer in packed bed with radial layered configuration[J]. Chemical Engineering Science, 2018, 197(6): 357-370.
doi: 10.1016/j.ces.2018.12.034 |
[38] |
PENG Wenping, XU Min, HUAI Xiulan, et al. CFD study on local fluid to wall heat transfer in packed beds and field synergy analysis[J]. Journal of Thermal Science, 2016, 25(2): 161-170.
doi: 10.1007/s11630-016-0847-x |
[39] |
LIU Xu, GUI Nan, YANG Xingtuan, et al. A new discrete element-embedded finite element method for transient deformation,movement and heat transfer in packed bed[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120714.
doi: 10.1016/j.ijheatmasstransfer.2020.120714 |
[40] | NICOLIN V, CLEARY P, MEHRAN K, et al. The effect of particle shape on the packed bed effective thermal conductivity based on DEM with polyhedral particles on the GPU[J]. Chemical Engineering Science, 2020, 219: 1-17. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[3] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[4] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[5] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[6] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[7] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[8] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[9] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[10] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[11] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[12] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[13] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[14] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[15] | WANG Yunyun, MA Zhicheng, ZHOU Qiang, DONG Haiying. Robust optimal scheduling of multi-energy cooperative game considering fairness [J]. Integrated Intelligent Energy, 2023, 45(2): 10-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||