Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (9): 45-52.doi: 10.3969/j.issn.2097-0706.2024.09.006
• Source-Grid Coordination • Previous Articles Next Articles
ZHAO Dazhou(), XIE Yurong(
), ZHANG Zhongping(
), DENG Ruifeng(
), LIU Lili(
)
Received:
2024-05-11
Revised:
2024-06-08
Published:
2024-09-25
Supported by:
CLC Number:
ZHAO Dazhou, XIE Yurong, ZHANG Zhongping, DENG Ruifeng, LIU Lili. Design and economic analysis of the molten salt heat storage system for a 300 MW coal-fired heating unit[J]. Integrated Intelligent Energy, 2024, 46(9): 45-52.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.09.006
Table 4
Comparison between simulation values and design values
项目 | VWO工况 | 100%THA工况 | |
---|---|---|---|
发电功率 | 仿真值/MW | 332.74 | 300.87 |
设计值/MW | 331.74 | 300.00 | |
相对误差/% | -0.30 | -0.29 | |
一级抽汽 回热量 | 仿真值/(t·h-1) | 79.32 | 65.87 |
设计值/(t·h-1) | 78.95 | 65.51 | |
相对误差/% | 3.61 | -0.55 | |
二级抽汽 回热量 | 仿真值/(t·h-1) | 81.89 | 69.86 |
设计值/(t·h-1) | 83.13 | 70.96 | |
相对误差/% | -2.59 | 1.55 | |
三级抽汽 回热量 | 仿真值/(t·h-1) | 26.71 | 21.18 |
设计值/(t·h-1) | 26.4 | 22.14 | |
相对误差/% | 1.36 | 4.30 | |
四级抽汽 回热量 | 仿真值/(t·h-1) | 88.05 | 77.61 |
设计值/(t·h-1) | 87.61 | 76.76 | |
相对误差/% | -0.49 | -1.10 | |
五级抽汽 回热量 | 仿真值/(t·h-1) | 26.21 | 22.68 |
设计值/(t·h-1) | 27.01 | 23.44 | |
相对误差% | 2.97 | 3.25 | |
六级抽汽 回热量 | 仿真值/(t·h-1) | 39.96 | 35.68 |
设计值/(t·h-1) | 39.16 | 34.88 | |
相对误差/% | -2.06 | -2.30 | |
七级抽汽 回热量 | 仿真值/(t·h-1) | 18.98 | 15.60 |
设计值/(t·h-1) | 19.00 | 15.73 | |
相对误差/% | 0.13 | 0.83 | |
八级抽汽 回热量 | 仿真值/(t·h-1) | 35.28 | 28.57 |
设计值/(t·h-1) | 35.76 | 28.55 | |
相对误差/% | 1.35 | -0.08 | |
低压缸排 气量 | 仿真值/(t·h-1) | 619.37 | 558.44 |
设计值/(t·h-1) | 618.73 | 558.1 | |
相对误差/% | -0.10 | -0.06 | |
除氧器给水温度 | 仿真值/℃ | 141.59 | 137.59 |
设计值/℃ | 141.3 | 137.3 | |
相对误差/% | -0.20 | -0.21 |
[1] | 李建林, 邸文峰, 李雅欣, 等. 长时储能技术及典型案例分析[J]. 热力发电, 2023, 52(11):85-94. |
LI Jianlin, DI Wenfeng, LI Yaxin, et al. Analysis of long-term energy storage technologies and typical case studies[J]. Thermal Power Generation, 2023, 52(11):85-94. | |
[2] | 李峻, 祝培旺, 王辉, 等. 基于高温熔盐储热的火电机组灵活性改造技术及其应用前景分析[J]. 南方能源建设, 2021, 8(3):63-70. |
LI Jun, ZHU Peiwang, WANG Hui, et al. Flexible modification technology and application prospect of thermal power unit based on high temperature molten salt heat storage[J]. Southern Energy Construction, 2021, 8(3):63-70. | |
[3] | 左芳菲, 韩伟, 姚明宇. 熔盐储能在新型电力系统中应用现状与发展趋势[J]. 热力发电. 2023, 52(2):1-9. |
ZUO Fangfei, HAN Wei, YAO Mingyu, et al. Application status and development trend of molten salt energy storage in novel power systems[J]. Thermal Power Generation, 2023, 52(2):1-9. | |
[4] | 张国龙, 居文平, 常东锋, 等. 电阻式熔盐加热器动态建模与参数化分析[J]. 热力发电, 2023, 52(9):155-161. |
ZHANG Guolong, JU Wenping, CHANG Dongfeng, et al. Dynamic modeling and parametric analysis of resistance molten salt heater[J]. Thermal Power Generation, 2023, 52(9):155-161. | |
[5] | 沈强, 顾晓鸥, 翁建明, 等. 蒸汽加热熔盐换热试验研究[J]. 锅炉技术, 2023, 54(1):27-33. |
SHEN Qiang, GU Xiaoou, WENG Jianming, et al. Experimental study on heat transfer characteristics of steam heated molten salt system[J]. Boiler Technology, 2023, 54(1):27-33. | |
[6] | 罗晓乐, 宋洋, 徐翔, 等. 计及风电不确定性的综合能源系统储能优化配置研究[J]. 东北电力技术, 2021, 42(12):18-25,46. |
LUO Xiaole, SONG Yang, XU Xiang, et al. Research on optimal allocation of energy storage of integrated energy system considering wind power uncertainty[J]. Northeast Electric Power Technology, 2021, 42(12):18-25,46. | |
[7] |
孟强, 杨洋, 熊亚选. 添加纳米SiO2熔盐传热储热稳定性能研究[J]. 综合智慧能源, 2023, 45(9):32-39.
doi: 10.3969/j.issn.2097-0706.2023.09.005 |
MENG Qiang, YANG yang, XIONG Yaxuan. Study on thermal stability of molten salt composites added with SiO2 nanoparticles[J]. Integrated Intelligent Energy, 2023, 45(9):32-39.
doi: 10.3969/j.issn.2097-0706.2023.09.005 |
|
[8] | 邹小刚, 刘明, 肖海丰, 等. 火电机组耦合熔盐储热深度调峰系统设计及性能分析[J]. 热力发电, 2023, 52(2):146-153. |
ZOU Xiaogang, LIU Ming, XIAO Haifeng, et al. Design and performance analysis of deep peak shaving system of thermal power units coupled with molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2):146-153. | |
[9] | 马汀山, 王伟, 王东晔, 等. 基于熔盐储热辅助煤电机组深度调峰的系统设计及容量计算方法研究[J]. 热力发电, 2023, 52(7):113-118. |
MA Tingshan, WANG Wei, WANG Dongye, et al. Research on system design and capacity calculation method for deep peak shaving of coal-fire unit based on molten salt heat storage assistance[J]. Thermal Power Generation, 2023, 52(7):113-118. | |
[10] | 宋晓辉, 韩伟, 王兴, 等. 基于高温熔盐储热系统的火电机组深度调峰方案对比及分析[J]. 热能动力工程, 2023, 38(11):64-74. |
SONG Xiaohui, HAN Wei, WANG Xing, et al. Comparison and analysis of deep peak shaving schemes for thermal power units based on high-temperature molten salt heat storage system[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38(11):64-74. | |
[11] | 庞力平, 张世刚, 段立强. 高温熔盐储能提高二次再热机组灵活性研究[J]. 中国电机工程学报, 2021, 41(8):2682-2690. |
PANG Liping, ZHANG Shigang, DUAN Liqiang. Flexibility improvement study on the double reheat power generation unit with a high temperature molten salt thermal energy storage[J]. Proceedings of the CSEE, 2021, 41(8):2682-2690. | |
[12] | 刘金恺, 鹿院卫, 魏海姣, 等. 熔盐储热辅助燃煤机组调峰系统设计及性能对比[J]. 热力发电, 2023, 52(2):111-118. |
LIU Jinkai, LU Yuanwei, WEI Haijiao, et al. Design and performance comparison of peak shaving system of coal-fired unit aided by molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2):111-118. | |
[13] | 苗林, 刘明, 张可臻, 等. 集成电制热熔盐储热的燃煤发电系统热力性能研究[J]. 工程热物理学报, 44(11):2999-3007. |
MIAO Lin, LIU Ming, ZHANG Kezhen, et al. Thermodynamic analysis on the coal-fired power plant integrated with power-to-heat molten salt thermal energy storage system[J]. Journal of Engineering Thermophysics, 44(11):2999-3007. | |
[14] | WANG B G, MA H, REN S J, et al. Effects of integration mode of the molten salt heat storage system and its hot storage temperature on the flexibility of a subcritical coal-fired power plant[J]. Journal of Energy Storage, 2023(58):1307-1318. |
[15] | 魏海姣, 鹿院卫, 吴玉庭, 等. 燃煤机组灵活性运行系统㶲分析[J]. 北京工业大学学报, 2022, 48(12):1307-1318. |
WEI Haijiao, LU Yuanwei, WU Yuting, et al. Exergy analysis of flexible operation of coal-fired power plant[J]. Journal of Beijing University of Technology, 2022, 48(12):1307-1318. | |
[16] | 魏海姣, 鹿院卫, 张灿灿, 等. 燃煤机组灵活性调节技术研究现状及展望[J]. 华电技术, 2020, 42(4): 57-63. |
WEI Haijiao, LU Yuanwei, WU Yuting, et al. Exergy analysis of flexible operation of coal-fired power plant[J]. Huadian Technology, 2020, 42(4): 57-63. | |
[17] |
王永旭, 周天羽, 邓庚庚, 等. 配置吸收式热泵的热电联产机组厂级智能运行优化[J]. 综合智慧能源, 2024, 46(3): 20-28.
doi: 10.3969/j.issn.2097-0706.2024.03.003 |
WANG Yongxu, ZHOU Tianyu, DENG Genggeng, et al. Plant-level intelligent operation optimization for cogeneration units equipped with absorption heat pumps[J]. Integrated Intelligent Energy, 2024, 46(3): 20-28.
doi: 10.3969/j.issn.2097-0706.2024.03.003 |
|
[18] | 王芳. 热储能技术在新型电力系统中的应用综述[J]. 东北电力技术, 2024, 45(3):13-15. |
WANG Fang. Review on application of thermal energy storage technology in new power systems[J]. Northeast Electric Power Technology, 2024, 45(3):13-15. | |
[19] |
张钟平, 刘亨, 谢玉荣, 等. 熔盐储热技术的应用现状与研究进展[J]. 综合智慧能源, 2023, 45(9): 40-47.
doi: 10.3969/j.issn.2097-0706.2023.09.006 |
ZHANG Zhongping, LIU Heng, XIE Yurong, et al. Application and research progress of molten salt heat storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 40-47.
doi: 10.3969/j.issn.2097-0706.2023.09.006 |
|
[20] | 陈睿哲, 熊亚选, 张慧, 等. 储能供热熔盐换热器设计及运行特性分析[J]. 华电技术, 2020, 42(12): 54-59. |
CHEN Ruizhe, XIONG Yaxuan, ZHANG Hui, et al. Design and dynamic performance analysis on a molten salt heat exchanger for energy storage and heating[J]. Huadian Technology, 2020, 42(12): 54-59. |
[1] | LI Feifei, WANG Shuhong, CUI Jindong. Study on influencing factors of automobile carbon emissions from the perspective of whole life cycle: A case study of Jilin Province [J]. Integrated Intelligent Energy, 2024, 46(8): 20-27. |
[2] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[3] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[4] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[5] | CUI Jindong, WANG Yuqing. Research on user-side energy storage coordinated and optimized scheduling mechanism under cloud energy storage mode [J]. Integrated Intelligent Energy, 2023, 45(9): 18-25. |
[6] | YU Haibin, GAO Yiling, LU Zengjie, DONG Shuai, LU Lin, REN Yizhi. Low-carbon economic scheduling of deep peak regulating market with the participation of wind power,thermal power,storage and carbon capture units considering demand response [J]. Integrated Intelligent Energy, 2023, 45(8): 80-89. |
[7] | SUN Jian, WANG Yinwu, WU Kexin, TAO Jianlong, QIN Yu. Research and application of heat pump technology in integrated energy systems [J]. Integrated Intelligent Energy, 2023, 45(4): 1-11. |
[8] | LI Hua, LU Mingxuan, TONG Yongji, ZHONG Chongfei. Application of situational awareness technology in the safe and stable operation of new power systems [J]. Integrated Intelligent Energy, 2023, 45(3): 24-33. |
[9] | ZENG Hui, DU Yuan, LI Tao, XUE Yixun, SUN Kaiyuan, XIA Tian, SUN Hongbin. Low-carbon planning of a park-level integrated electric and heating system considering carbon trading and green certificate trading [J]. Integrated Intelligent Energy, 2023, 45(2): 22-29. |
[10] | ZHANG Jinping, ZHOU Qiang, WANG Dingmei, LI Jin, LIU Lijuan. Review on solar thermal power generation technologies and their development [J]. Integrated Intelligent Energy, 2023, 45(2): 44-52. |
[11] | ZHANG Siliang, QI Lintong, QU Haowei, ZANG Dehua, ZHOU Wenhan, WANG Lidi. Research on solar assisted air source heat pump heating systems [J]. Integrated Intelligent Energy, 2023, 45(12): 10-19. |
[12] | ZHONG Wei, BO Qiming, CAI Chenyu, LU Shimeng, LI Manjie. Intelligent scheduling and control of a geothermal-gas complementary heating system based on model prediction [J]. Integrated Intelligent Energy, 2023, 45(12): 29-35. |
[13] | YANG Zhengjun, LIANG Shixing, XU Gang, LIU Wenyi, WANG Ying, CUI Jianwei. Capacity optimization configuration of wind-solar complementary electricity-alcohol cogeneration system [J]. Integrated Intelligent Energy, 2023, 45(12): 71-78. |
[14] | DU Yuze, DONG Haiying. Research on the source-load-storage collaborative scheduling strategy for new energy accommodation based on Stackelberg game [J]. Integrated Intelligent Energy, 2023, 45(11): 1-9. |
[15] | CHEN Yihui, LIN Lingqi, TIAN Xin, ZHANG Dongliang, WU Jun, LIU Zichen. Three-level wind power AVC coordinated control strategy [J]. Integrated Intelligent Energy, 2022, 44(4): 20-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||