Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (12): 66-72.doi: 10.3969/j.issn.2097-0706.2025.12.007
• Energy Storage and Multi-energy Coupling • Previous Articles Next Articles
MA Xudong1a,1b,2(
), DU Yanjun1a,1b,2,*(
), LI Bingqi1a,1b,2, CUI Yin1a,1b,2, ZHANG Cancan1a,1b,2, WU Yuting1a,1b,2(
)
Received:2025-05-27
Revised:2025-06-18
Published:2025-12-25
Contact:
DU Yanjun
E-mail:mxd2919@163.com;duyanjun@bjut.edu.cn;wuyuting@bjut.edu.cn
Supported by:CLC Number:
MA Xudong, DU Yanjun, LI Bingqi, CUI Yin, ZHANG Cancan, WU Yuting. Thermodynamic analysis and performance enhancement of high-temperature heat pump coupled energy storage system[J]. Integrated Intelligent Energy, 2025, 47(12): 66-72.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.12.007
Table 1
Recent research progress on heat pumps coupled with energy storage system
| 年份 | 热泵 | 储能系统 | 参考文献 |
|---|---|---|---|
| 2025 | 复合热泵 | 显热/潜热 | [ |
| 2023 | 光电-太阳能辅助热泵 | 水/潜热 | [ |
| 2023 | 吸收式热泵 | 显热/潜热 | [ |
| 2023 | 空气源热泵 | 潜热 | [ |
| 2023 | 电热泵 | 显热/潜热 | [ |
| 2023 | 太阳能热泵/地源热泵 | 潜热 | [ |
| 2022 | 间接式太阳能热泵 | 水/潜热 | [ |
| 2022 | 空气源热泵 | 显热/潜热 | [ |
| 2021 | 空气源热泵/地源热泵/余热热泵/ 太阳能辅助热泵 | 显热/潜热 | [ |
| 2021 | 太阳能辅助热泵 | 显热/潜热 | [ |
| 2019 | 直驱式太阳能热泵 | 潜热 | [ |
| 2019 | 空气源热泵 | 潜热 | [ |
Table 3
Typical PCMs suitable for high-temperature heat pumps and their thermophysical properties
| 编号 | PCM | 相变温度/℃ | 潜热/(kJ·kg-1) | 比热容(固相/液相)/ [kJ·(kg·K)-1] | 密度(固相/液相)/(kg·m-3) | 参考文献 |
|---|---|---|---|---|---|---|
| PCM-1 | Na2SO4·10H2O | 32.4 | 241.0 | 1.8/3.3 | 1 460/1 330 | [ |
| PCM-2 | 月桂酸 | 42.0 | 178.0 | 0.1/0.1 | 870/870 | [ |
| PCM-3 | 水合盐 | 48.0 | 210.0 | 2.4/2.4 | 1 600/1 666 | [ |
| PCM-4 | 石蜡+石墨 | 51.0 | 162.0 | 2.1/2.1 | 605/605 | [ |
| PCM-5 | 肉豆蔻酸 | 54.0 | 187.0 | 1.7/2.2 | 844/844 | [ |
| PCM-6 | A58H+脂肪醇 | 58.0 | 284.5 | 2.4/1.8 | 816/790 | [ |
| PCM-7 | 棕榈酸 | 63.0 | 187.0 | 1.9/2.2 | 847/847 | [ |
| [1] |
孙健, 王寅武, 吴可欣, 等. 综合能源系统中热泵技术研究与应用[J]. 综合智慧能源, 2023, 45(4): 1-11.
doi: 10.3969/j.issn.2097-0706.2023.04.001 |
|
SUN Jian, WANG Yinwu, WU Kexin, et al. Research and application of heat pump technology in integrated energy systems[J]. Integrated Intelligent Energy, 2023, 45(4): 1-11.
doi: 10.3969/j.issn.2097-0706.2023.04.001 |
|
| [2] | XIE B S, DU S, WANG R Z, et al. Heat pump integrated with latent heat energy storage[J]. Energy & Environmental Science, 2024, 17(19): 6943-6973. |
| [3] | 何永宁, 曹文良, 王苏澳, 等. 低GWP工质高温热泵系统应用研究[J/OL]. 化工学报, 1-14(2024-12-16)[2025-05-20]. http://kns.cnki.net/kcms/detail/11.1946.tq.20241213.1514.006.html. |
| HE Yongning, CAO Wenliang, WANG Su'ao, et al. Application research of high-temperature heat pump system with low GWP refrigerants[J/OL]. CIESC Journal, 1-14(2024-12-16)[2025-05-20]. http://kns.cnki.net/kcms/detail/11.1946.tq.20241213.1514.006.html. | |
| [4] |
MA X D, DU Y J, WU Y T, et al. Performance improvement of air-source autocascade high-temperature heat pumps using advanced exergy analysis[J]. Energy, 2024, 307: 132673.
doi: 10.1016/j.energy.2024.132673 |
| [5] | 胡斌, 姜佳彤, 吴迪, 等. 工业高温热泵发展现状与展望[J]. 制冷学报, 2023, 44(6): 1-12. |
|
HU Bin, JIANG Jiatong, WU Di, et al. Development status and prospects of industrial high-temperature heat pumps[J]. Journal of Refrigeration, 2023, 44(6): 1-12.
doi: 10.1016/j.ijrefrig.2014.05.004 |
|
| [6] |
WANG Y B, QUAN Z H, ZHAO Y H, et al. Feasibility and performance of coupled air-ground source heat pump systems with thermal storage[J]. Energy, 2025, 315: 134431.
doi: 10.1016/j.energy.2025.134431 |
| [7] |
MIGLIOLI A, ASTE N, DEL PERO C, et al. Photovoltaic-thermal solar-assisted heat pump systems for building applications: Integration and design methods[J]. Energy and Built Environment, 2023, 4(1): 39-56.
doi: 10.1016/j.enbenv.2021.07.002 |
| [8] |
JEONG J, JUNG H S, LEE J W, et al. Hybrid cooling and heating absorption heat pump cycle with thermal energy storage[J]. Energy, 2023, 283: 129027.
doi: 10.1016/j.energy.2023.129027 |
| [9] |
NING Z Z, ZHANG X L, JI J, et al. Research progress of phase change thermal storage technology in air-source heat pump[J]. Journal of Energy Storage, 2023, 64: 107114.
doi: 10.1016/j.est.2023.107114 |
| [10] |
WANG H C, HAN J B, ZHANG R Y, et al. Heat-power peak shaving and wind power accommodation of combined heat and power plant with thermal energy storage and electric heat pump[J]. Energy Conversion and Management, 2023, 297: 117732.
doi: 10.1016/j.enconman.2023.117732 |
| [11] |
GU H, CHEN Y Y, YAO X Y, et al. Review on heat pump (HP) coupled with phase change material (PCM) for thermal energy storage[J]. Chemical Engineering Journal, 2023, 455: 140701.
doi: 10.1016/j.cej.2022.140701 |
| [12] |
ZHOU J Z, ZENG C, WANG Z C, et al. Indirect expansion solar assisted heat pump system: A review[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102409.
doi: 10.1016/j.seta.2022.102409 |
| [13] |
ERMEL C, BIANCHI M V A, CARDOSO A P, et al. Thermal storage integrated into air-source heat pumps to leverage building electrification: A systematic literature review[J]. Applied Thermal Engineering, 2022, 215: 118975.
doi: 10.1016/j.applthermaleng.2022.118975 |
| [14] |
OSTERMAN E, STRITIH U. Review on compression heat pump systems with thermal energy storage for heating and cooling of buildings[J]. Journal of Energy Storage, 2021, 39: 102569.
doi: 10.1016/j.est.2021.102569 |
| [15] |
YANG L W, XU R J, HUA N, et al. Review of the advances in solar-assisted air source heat pumps for the domestic sector[J]. Energy Conversion and Management, 2021, 247: 114710.
doi: 10.1016/j.enconman.2021.114710 |
| [16] | SHI G H, LU A Y, LI D, et al. Recent advances in direct expansion solar assisted heat pump systems: A review[J]. Renewable & Sustainable Energy Reviews, 2019, 109: 349-366. |
| [17] |
SHEN J, QIAN Z, XING Z, et al. A review of the defrosting methods of air source heat pumps using heat exchanger with phase change material[J]. Energy Procedia, 2019, 160: 491-498.
doi: 10.1016/j.egypro.2019.02.197 |
| [18] | LIN Y X, JIA Y T, ALVA G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 2730-2742. |
| [19] |
MOHAMED S A, AL-SULAIMAN F A, IBRAHIM N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072-1089.
doi: 10.1016/j.rser.2016.12.012 |
| [20] |
万明忠, 王元媛, 李峻, 等. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31.
doi: 10.3969/j.issn.2097-0706.2023.09.004 |
|
WAN Mingzhong, WANG Yuanyuan, LI Jun, et al. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 26-31.
doi: 10.3969/j.issn.2097-0706.2023.09.004 |
|
| [21] |
LI X Q, ZHANG Y F, FANG L, et al. Energy, exergy, economic, and environmental analysis of an integrated system of high-temperature heat pump and gas separation unit[J]. Energy Conversion and Management, 2019: 198: 111911.
doi: 10.1016/j.enconman.2019.111911 |
| [22] |
QU S L, MA F, JI R, et al. System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage[J]. Energy and Buildings, 2015, 105: 294-301.
doi: 10.1016/j.enbuild.2015.07.040 |
| [23] |
HIRMIZ R, TEAMAH H M, LIGHTSTONE M F, et al. Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management[J]. Energy and Buildings, 2019, 190: 103-118.
doi: 10.1016/j.enbuild.2019.02.026 |
| [24] |
KELLY N J, TUOHY P G, HAWKES A D. Performance assessment of tariff-based air source heat pump load shifting in a UK detached dwelling featuring phase change-enhanced buffering[J]. Applied Thermal Engineering, 2014, 71(2): 809-820.
doi: 10.1016/j.applthermaleng.2013.12.019 |
| [25] |
SIVAKUMAR M, MAHALINGAM S, MOHANRAJ M. Energy, financial and environmental impact analysis of solar thermal heat pump systems using a direct expansion packed bed evaporator-collector[J]. Solar Energy, 2022, 232: 154-168.
doi: 10.1016/j.solener.2021.12.059 |
| [26] |
DOGKAS G, KONSTANTARAS J, KOUKOU M K, et al. Development and experimental testing of a compact thermal energy storage tank using paraffin targeting domestic hot water production needs[J]. Thermal Science and Engineering Progress, 2020, 19: 100573.
doi: 10.1016/j.tsep.2020.100573 |
| [27] |
MA X, DU Y, WU Y, et al. Performance evaluation and optimization guidance for steam generating heat pumps with significant temperature lift[J]. Case Studies in Thermal Engineering, 2024, 63: 105351.
doi: 10.1016/j.csite.2024.105351 |
| [1] | ZHEN Wenxi, MA Xiping, DAI Yuehong, NIU Wei, CHEN Baixu, ZENG Gui. Research on wind-storage self-synchronizing frequency regulation strategy based on intermediate layer control [J]. Integrated Intelligent Energy, 2025, 47(8): 21-29. |
| [2] | FENG Kan, WEI Libao, WU Zhaobin, LIU Wenjin, XU Qing, HAO Guojie. Research on voltage control of distribution networks with high-proportion household photovoltaics based on cluster division [J]. Integrated Intelligent Energy, 2025, 47(2): 60-70. |
| [3] | WEN Xiankui, LI Yaqin, ZHANG Shihai, FAN Qiang, YE Huayang, XIE Yiying, LI Xinzhuo. Impact of expander automatic control on operational stability during AA-CAES startup process [J]. Integrated Intelligent Energy, 2025, 47(12): 81-88. |
| [4] | ZHANG Kai, WANG Jinxiu, YANG Xuefeng, WANG Qiang, XIAO Shengzhong, LI Peng, SUN Chengwu. Configuration optimization of hybrid energy storage systems in wind farms based on secondary EMD [J]. Integrated Intelligent Energy, 2025, 47(10): 45-51. |
| [5] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. |
| [6] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
| [7] | FAN Pengcheng, ZHANG Yifan, YIN Wenqian, SHI Jiahao, YE Jilei. Energy storage capacity optimization of wind-PV-energy storage systems for buildings considering battery life loss [J]. Integrated Intelligent Energy, 2024, 46(11): 65-72. |
| [8] | WU Qi, ZHAO Xuanming, ZHANG Jiacheng, QIU Zhifeng, WANG Yalin. Study on low-carbon demand response considering electricity-carbon price coupling [J]. Integrated Intelligent Energy, 2024, 46(10): 56-66. |
| [9] | QIAO Lihui, LI Mingche, ZHANG Rui, FANG Zongjie. Capacity configuration method for a battery-SMES hybrid energy storage system in a DC microgrid [J]. Integrated Intelligent Energy, 2023, 45(9): 59-64. |
| [10] | XU Tianyun, CHEN Tao, GAO Ciwei. Research on capacity optimization for the user-side energy storage station participating in electric power market [J]. Integrated Intelligent Energy, 2023, 45(2): 77-84. |
| [11] | MA Yanhong, LYU Qingquan, ZHANG Zhenzhen, ZHAO Long, ZHOU Qiang, GAO Pengfei. Wind power fluctuation mitigation strategy based on double Kalman filter considering the SOC of the energy storage system [J]. Integrated Intelligent Energy, 2023, 45(2): 61-68. |
| [12] | WU Xueqiong, XIA Dong. Review on intelligent planning and decision-making technology for the new active distribution network [J]. Integrated Intelligent Energy, 2023, 45(11): 20-26. |
| [13] | HU Zuyuan, JIN Xianlin, TAN Yazhi, FAN Jingyi. Optimized configuration of distributed photovoltaic and energy storage system based on improved particle swarm algorithm [J]. Integrated Intelligent Energy, 2023, 45(1): 49-57. |
| [14] | ZHANG Rongquan, LI Gangqiang, BU Siqi, LIU Fang, ZHU Yuxiang. Economic operation of a multi-energy system based on adaptive learning rate firefly algorithm [J]. Integrated Intelligent Energy, 2022, 44(7): 49-57. |
| [15] | YE Zhaonian, ZHAO Changlu, WANG Yongzhen, HAN Kai, LIU Chaofan, HAN Juntao. Dual-objective optimization of energy networks with shared energy storage based on Nash bargaining [J]. Integrated Intelligent Energy, 2022, 44(7): 40-48. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

