综合智慧能源 ›› 2022, Vol. 44 ›› Issue (8): 97-106.doi: 10.3969/j.issn.2097-0706.2022.08.011
• 技术交流 • 上一篇
张靖1,2(), 刘宇宙1, 贺贝贝1,2, 赵凌1,2,*(
)
收稿日期:
2022-06-10
修回日期:
2022-08-15
出版日期:
2022-08-25
通讯作者:
* 赵凌(1985),男,副教授,博士生导师,工学博士,从事新能源材料设计方面的研究, zhaoling@cug.edu.cn。作者简介:
张靖(1997),男,在读硕士研究生,从事新能源材料设计方面的研究, 1023286813@qq.com。
基金资助:
ZHANG Jing1,2(), LIU Yuzhou1, HE Beibei1,2, ZHAO Ling1,2,*(
)
Received:
2022-06-10
Revised:
2022-08-15
Published:
2022-08-25
摘要:
质子交换膜燃料电池(PEMFC)是清洁高效的能源转换装置。质子交换膜作为重要的组件之一,会选择性地允许质子转移,但其昂贵的制作成本及较差的高温稳定性限制了在宽温范围的应用。金属有机框架(MOF)材料合成方法简单、结构稳定、比表面积高,广泛应用于催化和吸附等领域。近年来,研究人员发现某些MOF材料在一定温度、湿度范围内拥有优异的质子传导性能,且合成价格低廉,可作为潜在的质子交换膜替代材料。从有机配体(羧酸盐、膦酸盐、磺酸盐等)和客体分子(咪唑、铵根离子等)两部分叙述MOF材料的合成,每种MOF材料的化学稳定性、质子导电性能及其导电机理等方面的研究进展,并指出该类导电材料的发展前景和未来面临的挑战及可实施策略。
中图分类号:
张靖, 刘宇宙, 贺贝贝, 赵凌. 燃料电池金属有机框架质子膜材料研究展望[J]. 综合智慧能源, 2022, 44(8): 97-106.
ZHANG Jing, LIU Yuzhou, HE Beibei, ZHAO Ling. Reviews on proton membrane materials for metal-organic frameworks in fuel cells[J]. Integrated Intelligent Energy, 2022, 44(8): 97-106.
表1
不同有机配体MOF的结构特征和质子电导率
有机配体 | 金属有机框架 | 结构 | 质子电导率/(S·cm-1) | 参考文献 |
---|---|---|---|---|
草酸盐/甲酸盐 | [Fe(ox)(H2O)2] | 1D | 1.30×10-6(25 ℃,40%~95%RH) | [ |
[La2(ox)3(H2O)6]·4H2O | 2D | 3.35×10-7(95 ℃,100%RH) | [ | |
[Er2(ox)3(H2O)6]·12H2O | 3D | 1.76 ×10-9(90 ℃,100%RH) | [ | |
LaCr(ox)3·10H2O | 1D | 1.00×10-6(25 ℃,40%~95%RH) | [ | |
LaCo(ox)3·10H2O | 1D | 1.00×10-5(25 ℃,40%~95%RH) | [ | |
LaRu(ox)3·10H2O | 2D | 3.00×10-8(25 ℃,40%~95%RH) | [ | |
LaLa(ox)3·10H2O | 2D | 3.00×10-8(25 ℃,40%~95%RH) | [ | |
LaCo(ox)3·10H2O | 2D | 1.00×10-10(25 ℃,40%~95%RH) | [ | |
MOF-801 | 3D | 1.88×10-3(25 ℃,98%RH) | [ | |
芳香羧酸酯 | Zr6O4(OH)6(p-BDC)5 | 3D | 6.93×10-3(65 ℃,95%RH) | [ |
Mg(p-BDC)(PyOH) | 3D | 8.30×10-6(90 ℃,90%RH) | [ | |
[[Zn(2-MBIm)(o-BDC)(H2O)]·2H2O]n | 1D | 1.00×10-5(25 ℃,100%RH) | [ | |
[Cu(H4L)(DMF)4]n | 1D | 3.46×10-3(95 ℃,95%RH) | [ | |
咪唑类 | [Cu(p-IPhHIDC)]n | 2D | 1.15×10-3(100 ℃,98%RH) | [ |
{Na[Cd(MIDC)]}n | 3D | 1.04×10-3(100 ℃,98%RH) | [ | |
磷酸盐 | [Li3(HPA)(H2O)4]·H2O | 1D | 1.10×10-4(24 ℃,98%RH) | [ |
Na2(HHPA)(H2O)4 | 3D | 5.60×10-3(24 ℃,98%RH) | [ | |
K2(HHPA)(H2O)2 | 3D | 1.30×10-3(24 ℃,98%RH) | [ | |
Cs(H2HPA) | 3D | 3.50×10-5(24 ℃,98%RH) | [ | |
[Ca2(H3PiPhtA)2(H2PiPhtA)(H2O)2]·5H2O | 3D | 5.70×10-4(24 ℃,98%RH) | [ | |
MgH6ODTMP·6H2O | 3D | 1.60×10-3(19 ℃,100%RH) | [ | |
Zr2(PO4)H5(L)2·2H2O | 2D | 1.00×10-3(140 ℃,95%RH) | [ | |
磺酸盐 | BUT-8 | 3D | 1.27×10-1(80 ℃,100%RH) | [ |
UiO-66-SO3H | — | 3.40×10-1(80 ℃,98%RH) | [ |
表2
不同客体分子MOF的结构特征和质子电导率
有机配体 | 金属有机框架 | 结构 | 质子电导率/(S·cm-1) | 参考文献 |
---|---|---|---|---|
NH4+ | (NH4)4[MnCr2(ox)6]·4H2O | 2D | 1.10×10-3(40 ℃,96%RH) | [ |
NH4Br@HKUST-1 | 3D | 8.99×10-4(25 ℃,99%RH) | [ | |
咪唑类 | Al(OH)(1,4-ndc) | 3D | 2.20×10-5(25 ℃,99%RH) | [ |
Im@(NENU-3) | 3D | 1.82×10-2(70 ℃,90%RH) | [ | |
Im-Cu@(NENU-3a) | 3D | 3.16×10-4(70 ℃,90%RH) | [ | |
Im@Fe-MOF | 3D | 4.23×10-3(60 ℃,98%RH) | [ |
[1] |
SHARAF O Z, ORHAN M F. An overview of fuel cell technology: Fundamentals and applications[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 810-853.
doi: 10.1016/j.rser.2014.01.012 |
[2] |
GOLKHATMI S Z, ASGHAR M I, LUND P D. A review on solid oxide fuel cell durability:Latest progress,mechanisms,and study tools[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112339.
doi: 10.1016/j.rser.2022.112339 |
[3] | 张宝斌. 质子交换膜燃料电池冷启动策略研究现状[J]. 节能, 2018, 37(12):107-111. |
ZHANG Baobin. Research status on cold start strategy of proton exchange membrane fuel cell[J]. Energy Conservation, 2018, 37(12):112-116. | |
[4] | 岳利可, 王世学, 李林军. 质子交换膜燃料电池冷启动研究进展[J]. 化工进展, 2017, 36(9):3257-3265. |
YUE Like, WANG Shixue, LI Linjun. Research progress of cold start of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2017, 36(9):3257-3265. | |
[5] |
MAURITZ K A, MOORE R B. State of understanding of Nafion[J]. Chemical reviews, 2004, 104(10): 4535-4586.
doi: 10.1021/cr0207123 |
[6] |
TAKATA H, MIZUNO N, NISHIKAWA M, et al. Adsorption properties of water vapor on sulfonated perfluoropolymer membranes[J]. International Journal of Hydrogen Energy, 2007, 32(3): 371-379.
doi: 10.1016/j.ijhydene.2006.09.041 |
[7] | GAYEN P, CHAPLIN B P. Fluorination of boron-doped diamond film electrodes for minimization of perchlorate formation[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27638-27648. |
[8] |
FU R Q, WOO J J, SEO S J, et al. Sulfonated polystyrene/polyvinyl chloride composite membranes for PEMFC applications[J]. Journal of Membrane Science, 2008, 309(1-2): 156-164.
doi: 10.1016/j.memsci.2007.10.013 |
[9] |
LEE C H, PARK C H, LEE Y M. Sulfonated polyimide membranes grafted with sulfoalkylated side chains for proton exchange membrane fuel cell(PEMFC) applications[J]. Journal of Membrane Science, 2008, 313(1-2): 199-206.
doi: 10.1016/j.memsci.2008.01.004 |
[10] |
AHMED F, SUTRADHAR S C, RYU T, et al. Comparative study of sulfonated branched and linear poly (phenylene)s polymer electrolyte membranes for fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5374-5385.
doi: 10.1016/j.ijhydene.2017.08.175 |
[11] |
YOO T, AZIZ M A, OH K, et al. Modified sulfonated Poly (arylene ether) multiblock copolymers containing highly sulfonated blocks for polymer electrolyte membrane fuel cells[J]. Journal of Membrane Science, 2017, 542: 102-109.
doi: 10.1016/j.memsci.2017.08.008 |
[12] |
GUTRU R, PEERA S G, BHAT S D, et al. Synthesis of sulfonated poly (bis (phenoxy) phosphazene) based blend membranes and its effect as electrolyte in fuel cells[J]. Solid State Ionics, 2016, 296: 127-136.
doi: 10.1016/j.ssi.2016.09.011 |
[13] |
RACHIURI Y, BISHT K K, PARMAR B, et al. Luminescent MOFs comprising mixed tritopic linkers and Cd(II)/Zn(II) nodes for selective detection of organic nitro compounds and iodine capture[J]. Journal of Solid State Chemistry, 2015, 223: 23-31.
doi: 10.1016/j.jssc.2014.05.012 |
[14] |
ZHANG X, WANG Z J, CHEN S G, et al. Cd-based metal-organic frameworks from solvothermal reactions involving in situ aldimine condensation and the highly sensitive detection of Fe3+ ions[J]. Dalton Transactions, 2017, 46(7): 2332-2338.
doi: 10.1039/C6DT04675D |
[15] |
YAGHI O M, LI G, LI H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706.
doi: 10.1038/378703a0 |
[16] |
LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279.
doi: 10.1038/46248 |
[17] |
ROSHANRAVAN B, YOUNESI H, ABDOLLAHI M, et al. Incorporating sulfonated MIL-100(Fe) in sulfonated polysulfone for enhancing microbial fuel cell performance[J]. Fuel, 2022, 312: 122962.
doi: 10.1016/j.fuel.2021.122962 |
[18] | LATROCHE M, SURBLE S, SERRE C, et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101[J]. Angewandte Chemie International Edition, 2006, 118(48): 8407-8411. |
[19] |
CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42):13850-13851.
doi: 10.1021/ja8057953 |
[20] |
PISCOPO C G, POLYZOIDIS A, SCHWARZER M, et al. Stability of UiO-66 under acidic treatment: opportunities and limitations for post-synthetic modifications[J]. Microporous and Mesoporous Materials, 2015, 208: 30-35.
doi: 10.1016/j.micromeso.2015.01.032 |
[21] |
PAN Y, SUN K, LIU S J, et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J]. Journal of the American Chemical Society, 2018, 140(7): 2610-2618.
doi: 10.1021/jacs.7b12420 |
[22] |
HUANG X C, LIN Y Y, ZHANG J P, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks:Zinc(II) imidazolates with unusual zeolitic topologies[J]. Angewandte Chemie International Edition, 2006, 45(10): 1557-1559.
doi: 10.1002/anie.200503778 |
[23] |
SHIGEMATSU A, YAMADA T, KITAGAWA H. Wide control of proton conductivity in porous coordination polymers[J]. Journal of the American Chemical Society, 2011, 133(7): 2034-2036.
doi: 10.1021/ja109810w |
[24] |
TAYLOR-PASHOW K M L, DELLA ROCCA J, XIE Z, et al. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery[J]. Journal of the American Chemical Society, 2009, 131(40): 14261-14263.
doi: 10.1021/ja906198y |
[25] |
MCKINLAY A C, MORRIS R E, HORCAJADA P, et al. BioMOFs: Metal-organic frameworks for biological and medical applications[J]. Angewandte Chemie International Edition, 2010, 49(36): 6260-6266.
doi: 10.1002/anie.201000048 |
[26] | AHMET S. Metal substrate for fuel cells[Z]. 2009. |
[27] |
DESANTIS D, MASON J A, JAMES B D, et al. Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage[J]. Energy & Fuels, 2017, 31(2): 2024-2032.
doi: 10.1021/acs.energyfuels.6b02510 |
[28] | LI Y Z, WANG G D, MA L N, et al. Multiple functions of gas separation and vapor adsorption in a new MOF with open tubular channels[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4102-4109. |
[29] |
LE D H, LOUGHAN R P, GLADYSIAK A, et al. Lanthanide metal-organic frameworks for the fixation of CO2 under aqueous-rich and mixed-gas conditions[J]. Journal of Materials Chemistry A, 2022, 10(3): 1442-1450.
doi: 10.1039/D1TA09463G |
[30] |
WANG Y, LIU B, SHEN X J, et al. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation[J]. Advanced Energy Materials, 2021, 11(16): 2003759.
doi: 10.1002/aenm.202003759 |
[31] | WAHIDUZZAMAN M, WANG S, SCHNEE J, et al. A high proton conductive hydrogen-sulfate decorated titanium carboxylate metal-organic framework[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5776-5783. |
[32] |
LIU R L, ZHAO L L, YU S H, et al. Enhancing proton conductivity of a 3D metal-organic framework by attaching guest NH3 molecules[J]. Inorganic Chemistry, 2018, 57(18): 11560-11568.
doi: 10.1021/acs.inorgchem.8b01606 |
[33] |
SARANGO-RAMIREZ M K, LIM D W, KOLOKOLOV D I, et al. Superprotonic conductivity in metal-organic framework via solvent-free coordinative urea insertion[J]. Journal of the American Chemical Society, 2020, 142(15): 6861-6865.
doi: 10.1021/jacs.0c00303 |
[34] |
BAO Y L, ZHENG J Y, ZHENG H P, et al. Cu-MOF@PVP/PVDF hybrid composites as tunable proton-conducting materials[J]. Journal of Solid State Chemistry, 2022, 310: 123070.
doi: 10.1016/j.jssc.2022.123070 |
[35] |
梁茜, 王诚, 雷一杰, 等. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11):1770-1783.
doi: 10.7536/PC171239 |
LIANG Xi, WANG Cheng, LEI Yijie, et al. Potential applications of metal organic framework-based materials for proton exchange membrane fuel cells[J]. Progress in Chemistry, 2018, 30(11): 1770-1783. | |
[36] |
BRADSHAW D, GARAI A, HUO J. Metal-organic framework growth at functional interfaces: Thin films and composites for diverse applications[J]. Chemical Society Reviews, 2012, 41(6): 2344-2381.
doi: 10.1039/C1CS15276A |
[37] |
AGMON N. The grotthuss mechanism[J]. Chemical Physics Letters, 1995, 244(5-6): 456-462.
doi: 10.1016/0009-2614(95)00905-J |
[38] | KREUER K D, RABENAU A, WEPPNER W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors[J]. Angewandte Chemie International Edition, 1982, 21(3): 208-209. |
[39] |
PILI S, ARGENT S P, MORRIS C G, et al. Proton conduction in a phosphonate-based metal-organic framework mediated by intrinsic "free diffusion inside a sphere"[J]. Journal of the American Chemical Society, 2016, 138(20): 6352-6355.
doi: 10.1021/jacs.6b02194 |
[40] |
LOSCH P, JOSHI H R, VOZNIUK O, et al. Proton mobility, intrinsic acid strength, and acid site location in zeolites revealed by varying temperature infrared spectroscopy and density functional theory studies[J]. Journal of the American Chemical Society, 2018, 140(50): 17790-17799.
doi: 10.1021/jacs.8b11588 |
[41] |
LI Y, WEE L H, VOLODIN A, et al. Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method[J]. Chemical Communications, 2015, 51(5): 918-920.
doi: 10.1039/C4CC06699E |
[42] |
VAKILI R, XU S J, AL-JANABI N, et al. Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption[J]. Microporous and Mesoporous Materials, 2018, 260: 45-53.
doi: 10.1016/j.micromeso.2017.10.028 |
[43] |
SADAKIYO M, YAMADA T, KITAGAWA H. Rational designs for highly proton-conductive metal-organic frameworks[J]. Journal of the American Chemical Society, 2009, 131(29): 9906-9907.
doi: 10.1021/ja9040016 |
[44] |
ISHIKAWA R, UENO S, YAGISHITA S, et al. Proton conduction via lattice water molecules in oxalato-bridged lanthanide porous coordination polymers[J]. Dalton Transactions, 2016, 45(39): 15399-15405.
doi: 10.1039/C6DT02677J |
[45] |
O̅KAWA H, SADAKIYO M, OTSUBO K, et al. Proton conduction study on water confined in channel or layer networks of LaIIIMIII(ox)3·10H2O(M=Cr,Co,Ru,La)[J]. Inorganic Chemistry, 2015, 54(17): 8529-8535.
doi: 10.1021/acs.inorgchem.5b01176 |
[46] | ZHANG J, BAI H J, REN Q, et al. Extra water-and acid-stable MOF-801 with high proton conductivity and its composite membrane for proton-exchange membrane[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28656-28663. |
[47] |
TAYLOR J M, DEKURA S, IKEDA R, et al. Defect control to enhance proton conductivity in a metal-organic framework[J]. Chemistry of Materials, 2015, 27(7): 2286-2289.
doi: 10.1021/acs.chemmater.5b00665 |
[48] |
SHALINI S, AGGARWAL S, SINGH S K, et al. 10000-fold enhancement in proton conduction by doping of cesium ions in a proton-conducting zwitterionic metal-organic framework[J]. European Journal of Inorganic Chemistry, 2016, 2016(27): 4382-4386.
doi: 10.1002/ejic.201600364 |
[49] |
SARAVANABHARATHI D, OBULICHETTY M, RAMESHKUMAR S, et al. New 2-methyl benzimidazole based zinc carboxylates:Supramolecular structures, biomimetic proton conductivities and luminescent properties[J]. Inorganica Chimica Acta, 2015, 437: 167-176.
doi: 10.1016/j.ica.2015.08.018 |
[50] |
ZHU M, SONG X Z, SONG S Y, et al. A temperature-responsive smart europium metal-organic framework switch for reversible capture and release of intrinsic Eu3+ ions[J]. Advanced Science, 2015, 2(4): 1500012.
doi: 10.1002/advs.201500012 |
[51] |
SUN Z B, YU S H, ZHAO L L, et al. A highly stable two-dimensional copper(II) organic framework for proton conduction and ammonia impedance sensing[J]. Chemistry—A European Journal, 2018, 24(42): 10829-10839.
doi: 10.1002/chem.201801844 |
[52] | LIU R L, LIU Y R, YU S H, et al. A highly proton-conductive 3D ionic cadmium-organic framework for ammonia and amines impedance sensing[J]. ACS Applied Materials & Interfaces, 2018, 11(1): 1713-1722. |
[53] |
BAZAGA-GARCIA M, PAPADAKI M, COLODRERO R M P, et al. Tuning proton conductivity in alkali metal phosphonocarboxylates by cation size-induced and water-facilitated proton transfer pathways[J]. Chemistry of Materials, 2015, 27(2): 424-435.
doi: 10.1021/cm502716e |
[54] |
BAZAGA-GARCIA M, COLODRERO R M P, PAPADAKI M, et al. Guest molecule-responsive functional calcium phosphonate frameworks for tuned proton conductivity[J]. Journal of the American Chemical Society, 2014, 136(15): 5731-5739.
doi: 10.1021/ja500356z |
[55] |
COLODRERO R M P, OLIVERA-PASTOR P, LOSILLA E R, et al. High proton conductivity in a flexible, cross-linked,ultramicroporous magnesium tetraphosphonate hybrid framework[J]. Inorganic Chemistry, 2012, 51(14): 7689-7698.
doi: 10.1021/ic3007316 |
[56] |
DONNADIO A, NOCCHETTI M, COSTANTINO F, et al. A layered mixed zirconium phosphate/phosphonate with exposed carboxylic and phosphonic groups: X-ray powder structure and proton conductivity properties[J]. Inorganic Chemistry, 2014, 53(24): 13220-13226.
doi: 10.1021/ic502473w |
[57] |
YANG F, XU G, DOU Y, et al. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction[J]. Nature Energy, 2017, 2(11): 877-883.
doi: 10.1038/s41560-017-0018-7 |
[58] |
YANG F, HUANG H, WANG X, et al. Proton conductivities in functionalized UiO-66:Tuned properties, thermogravimetry mass, and molecular simulation analyses[J]. Crystal Growth & Design, 2015, 15(12):5827-5833.
doi: 10.1021/acs.cgd.5b01190 |
[59] |
TAYLOR J M, KOMATSU T, DEKURA S, et al. The role of a three dimensionally ordered defect sublattice on the acidity of a sulfonated metal-organic framework[J]. Journal of the American Chemical Society, 2015, 137(35): 11498-11506.
doi: 10.1021/jacs.5b07267 |
[60] |
YANG F, HUANG H L, WANG X Y, et al. Proton conductivities in functionalized UiO-66:Tuned properties,thermogravimetry mass, and molecular simulation analyses[J]. Crystal Growth & Design, 2015, 15(12): 5827-5833.
doi: 10.1021/acs.cgd.5b01190 |
[61] | PHANG W J, JO H, LEE W R, et al. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation[J]. Angewandte Chemie International Edition, 2015, 127(17): 5231-5235. |
[62] |
RAGON F, CAMPO B, YANG Q, et al. Acid-functionalized UiO-66 (Zr) MOFs and their evolution after intra-framework cross-linking:Structural features and sorption properties[J]. Journal of Materials Chemistry A, 2015, 3(7): 3294-3309.
doi: 10.1039/C4TA03992K |
[63] |
SCHAATE A, ROY P, GODT A, et al. Modulated synthesis of Zr-based metal-organic frameworks:From nano to single crystals[J]. Chemistry-A European Journal, 2011, 17(24): 6643-6651.
doi: 10.1002/chem.201003211 |
[64] |
JEONG N C, SAMANTA B, LEE C Y, et al. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1[J]. Journal of the American Chemical Society, 2012, 134(1): 51-54.
doi: 10.1021/ja2110152 |
[65] |
SINGHA S, MAITY S K, BISWAS S, et al. A magnesium-based bifunctional MOF: Studies on proton conductivity, gas and water adsorption[J]. Inorganica Chimica Acta, 2016, 453: 321-329.
doi: 10.1016/j.ica.2016.08.033 |
[66] |
LIU R L, ZHAO L L, DAI W, et al. A comparative investigation of proton conductivities for two metal-organic frameworks under water and aqua-ammonia vapors[J]. Inorganic Chemistry, 2018, 57(3): 1474-1482.
doi: 10.1021/acs.inorgchem.7b02851 |
[67] | LIANG X, LI B, WANG M H, et al. Effective approach to promoting the proton conductivity of metal-organic frameworks by exposure to aqua-ammonia vapor[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25082-25086. |
[68] |
TAYLOR J M, DAWSON K W, SHIMIZU G K H. A water-stable metal-organic framework with highly acidic pores for proton-conducting applications[J]. Journal of the American Chemical Society, 2013, 135(4): 1193-1196.
doi: 10.1021/ja310435e |
[69] |
ALBERTI G, CASCIOLA M, COSTANTINO U, et al. Protonic conductivity of layered zirconium phosphonates containing —SO3H groups.I.Preparation and characterization of a mixed zirconium phosphonate of composition Zr(O3PR)0.73(O3PR′)1.27·nH2O,with R=-C6H4-SO3H and R′=-CH2-OH[J]. Solid State Ionics, 1992, 50(3-4): 315-322.
doi: 10.1016/0167-2738(92)90235-H |
[70] |
ALBERTI G, BOCCALI L, CASCIOLA M, et al. Protonic conductivity of layered zirconium phosphonates containing —SO3H groups.III. preparation and characterization of gamma-zirconium sulfoaryl phosphonates[J]. Solid State Ionics, 1996, 84(1-2):97-104.
doi: 10.1016/S0167-2738(96)83011-6 |
[71] |
JAIMEZ E, HIX G B, SLADE R C T. The titanium(I) salt of N,N-(diphosphonomethyl) glycine:Synthesis, characterisation,porosity and proton conduction[J]. Journal of Materials Chemistry, 1997, 7(3): 475-479.
doi: 10.1039/a606024b |
[72] |
GAO Y, BRPERSEN R, HAGEMAN W, et al. High proton conductivity in cyanide-bridged metal-organic frameworks:Understanding the role of water[J]. Journal of Materials Chemistry A, 2015, 3(44): 22347-22352.
doi: 10.1039/C5TA05280G |
[73] |
ZHANG G, FEI H. Missing metal-linker connectivities in a 3-D robust sulfonate-based metal-organic framework for enhanced proton conductivity[J]. Chemical Communications, 2017, 53(29): 4156-4159.
doi: 10.1039/C7CC01461A |
[74] |
PARDO E, TRAIN C, GONTARD G, et al. High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework[J]. Journal of the American Chemical Society, 2011, 133(39): 15328-15331.
doi: 10.1021/ja206917z |
[75] |
YOU Y W, XUE C, TIAN Z F, et al. Three orders of magnitude enhancement of proton conductivity of porous coordination polymers by incorporating ion-pairs into a framework[J]. Dalton Transactions, 2016, 45(18): 7893-7899.
doi: 10.1039/C6DT00290K |
[76] |
BUREEKAEW S, HORIKE S, HIGUCHI M, et al. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity[J]. Nature Materials. 2011, 8(10): 831-836.
doi: 10.1038/nmat2526 |
[77] |
YE Y X, GUO W G, WANG L H, et al. Straightforward loading of imidazole molecules into metal-organic framework for high proton conduction[J]. Journal of the American Chemical Society, 2017, 139(44):15604-15607.
doi: 10.1021/jacs.7b09163 |
[78] |
ZHANG F M, DOND L Z, QIN J S, et al. Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(17): 6183-6189.
doi: 10.1021/jacs.7b01559 |
[1] | 杨磊, 王睿, 马丽丽, 孙宁, 李雪莲, 陈婷, 王绍荣, 史彩霞. 钙和铁共掺杂PrBaCo2O5+δ作为固体氧化物燃料电池阴极的研究[J]. 综合智慧能源, 2024, 46(7): 47-52. |
[2] | 卓超然, 辛杰, 洪涵卓, 安邦, 李宁. 弱电网条件下并网逆变器阻抗模型的建立方法综述[J]. 综合智慧能源, 2024, 46(6): 88-101. |
[3] | 张心怡, 杨波. 考虑构网型和跟网型变流器的孤岛微电网小信号稳定性分析[J]. 综合智慧能源, 2024, 46(2): 12-18. |
[4] | 孟强, 杨洋, 熊亚选. 添加纳米SiO2熔盐传热储热稳定性能研究[J]. 综合智慧能源, 2023, 45(9): 32-39. |
[5] | 韩朝兵, 汤冰, 尹瑞麟, 朱正香, 薛明华, 祝建飞, 艾春美, 孙立. 典型综合能源系统建模及特性仿真研究[J]. 综合智慧能源, 2023, 45(6): 49-58. |
[6] | 蒋雨辰, 李清扬, 胡勋. 基于微波热解技术制备生物炭的研究进展[J]. 综合智慧能源, 2023, 45(5): 46-62. |
[7] | 刘会强, 郭裕, 邢华栋, 慕腾, 刘建强, 张爱军. 基于前馈功率解耦控制的光伏电站系统稳定性研究[J]. 综合智慧能源, 2023, 45(3): 17-23. |
[8] | 韩世旺, 赵颖, 张兴宇, 玄承博, 赵田田, 侯绪凯, 刘倩倩. 面向碳中和的新型电力系统氢储能调峰技术研究[J]. 综合智慧能源, 2022, 44(9): 20-26. |
[9] | 高圆, 李智, 李甲鸿, 高九涛, 李成新, 李长久. 金属支撑固体氧化物燃料电池技术进展[J]. 综合智慧能源, 2022, 44(8): 1-24. |
[10] | 罗丽琦, 王月, 钟海军, 李庆勋, 谢广元, 王绍荣. 固体氧化物燃料电池热电联供系统设计[J]. 综合智慧能源, 2022, 44(8): 25-32. |
[11] | 朱沙沙, 李宗宝, 邓雅恬, 王欣, 贾礼超. 合金纳米颗粒在碳氢燃料SOFC阳极中的应用[J]. 综合智慧能源, 2022, 44(8): 33-42. |
[12] | 杨莹, 张雁祥, 闫牧夫. 中低温固体氧化物燃料电池电解质制备方法研究进展[J]. 综合智慧能源, 2022, 44(8): 50-57. |
[13] | 曹加锋, 李欣然, 邵善德, 冀月霞, 邵宗平. 质子陶瓷燃料电池稳定性研究综述[J]. 综合智慧能源, 2022, 44(8): 58-67. |
[14] | 许阳森, 张磊, 毕磊. 中温质子导体固体氧化物燃料电池的发展与挑战[J]. 综合智慧能源, 2022, 44(8): 68-74. |
[15] | 陈晗钰, 周晓亮, 刘立敏, 钱欣源, 王宙, 何非凡, 绳阳. 质子导体固体电解池电解水制氢研究进展[J]. 综合智慧能源, 2022, 44(8): 75-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||