| [1] |
孙立, 余潜跃, 张玉琼, 等. 基于绿电转氨的综合能源生产单元经济性与碳足迹评估[J]. 中国电机工程学报, 2025, 45(7): 2567-2579.
|
|
SUN Li, YU Qianyue, ZHANG Yuqiong, et al. Evaluation of economy and carbon footprint of integrated energy production unit based on green power to ammonia[J]. Proceedings of the CSEE, 2025, 45(7): 2567-2579.
|
| [2] |
YUAN M, MATHIESEN BVAD, SCHNEIDER N, et al. Renewable energy and waste heat recovery in district heating systems in China: A systematic review[J]. Energy, 2024, 294: 130788.
|
| [3] |
方豪, 王春林, 林波荣. 我国钢铁余热清洁供暖现状和产能调整下的余热潜力预测[J]. 建筑节能, 2019, 47(6): 106-111.
|
|
FANG Hao, WANG Chunlin, LIN Borong. Current situation of clean heating using surplus heat from iron and steel industry and prediction on the future potential of the surplus heat[J]. Building Energy Efficiency, 2019, 47(6): 106-111.
|
| [4] |
饶文姬, 赵良举, 刘朝, 等. 利用LNG冷能与工业余热的有机朗肯循环研究[J]. 工程热物理学报, 2014(2):213-217.
|
|
RAO Wenji, ZHAO Liangju, LIU Chao, et al. Research of organic Rankine cycle utilizing LNG cold exergy and waste heat[J]. Journal of Engineering Thermophysics, 2014(2): 213-217.
|
| [5] |
张建平. 吸收式热泵技术在工业余热回收中的应用与前景[J]. 科技资讯, 2024(16):206-208.
|
|
ZHANG Jianping. Application and prospect of absorption heat pump technology in industrial waste heat recovery[J]. Science & Technology Information, 2024(16): 206-208.
|
| [6] |
安美燕, 赵心蕊, 徐震原, 等. 工业余热回收的耦合压缩-吸收式高温热泵循环[J]. 上海交通大学学报, 2021, 55(4): 434-443.
doi: 10.16183/j.cnki.jsjtu.2020.023
|
|
AN Meiyan, ZHAO Xinrui, XU Zhenyuan, et al. A hybrid compression-absorption high temperature heat pump cycles for industrial waste heat recovery[J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 434-443.
|
| [7] |
罗进成, 李锁华, 商玮珂, 等. 化石资源与新能源融合下的制氢技术发展及展望[J]. 应用化工, 2024, 53(11): 2777-2782.
|
|
LUO Jincheng, LI Suohua, SHANG Weike, et al. Development and prospect of hydrogen production technology under the integration of fossil resources and new energy[J]. Applied Chemical Industry, 2024, 53(11): 2777-2782.
|
| [8] |
栗奕博. 计及风光氢储的综合能源系统协同规划研究[D]. 北京: 华北电力大学, 2024.
|
|
LI Yibo. Study on collaborative planning of comprehensive energy system considering wind-solar hydrogen storage[D]. Beijing: North China Electric Power University, 2024.
|
| [9] |
艾鑫. 计及垃圾热解和氢能耦合的综合能源系统优化调度研究[D]. 阜新: 辽宁工程技术大学, 2024.
|
|
AI Xin. Study on optimal scheduling of comprehensive energy system considering the coupling of waste pyrolysis and hydrogen energy[D]. Fuxin:Liaoning Technical University, 2024.
|
| [10] |
YANG Z X, REN Z Y, LI H, et al. A multi-stage stochastic dispatching method for electricity-hydrogen integrated energy systems driven by model and data[J]. Applied Energy, 2024, 371: 123668.
|
| [11] |
韦翌帆. 考虑源-荷不确定性和低碳目标的含氢综合能源系统优化[D]. 石家庄: 河北科技大学, 2024.
|
|
WEI Yifan. Optimization of hydrogen-containing comprehensive energy system considering source-load uncertainty and low-carbon target[D]. Shijiazhuang: Hebei University of Science and Technology, 2024.
|
| [12] |
熊阳阳, 于艾清, 王育飞, 等. 基于多场景多重不确定性的含混氢天然气的综合能源系统运行优化[J]. 储能科学与技术, 2024, 13(6): 1888-1899.
doi: 10.19799/j.cnki.2095-4239.2023.0958
|
|
XIONG Yangyang, YU Aiqing, WANG Yufei, et al. Optimization of integrated energy system operation containing hydrogen-compressed natural gas based on multiple scenarios and uncertainties[J]. Energy Storage Science and Technology, 2024, 13(6): 1888-1899.
doi: 10.19799/j.cnki.2095-4239.2023.0958
|
| [13] |
FANG X L, DONG W, WANG Y B, et al. Multi-stage and multi-timescale optimal energy management for hydrogen-based integrated energy systems[J]. Energy, 2024, 286: 129576.
|
| [14] |
梁涛, 柴露露, 谭建鑫, 等. 基于深度强化学习算法的氢耦合电-热综合能源系统优化调度[J]. 电力自动化设备, 2025, 45(1): 59-66.
|
|
LIANG Tao, CHAI Lulu, TAN Jianxin, et al. Optimal scheduling of hydrogen coupled electrothermal integrated energy system based on deep reinforcement learning algorithm[J]. Electric Power Automation Equipment, 2025, 45(1): 59-66.
|
| [15] |
梁俊鹏, 张高航, 李凤婷, 等. 计及氢储能-制氨-碳捕集的综合能源系统低碳优化调度[J]. 电力自动化设备, 2024, 44(10): 16-23.
|
|
LIANG Junpeng, ZHANG Gaohang, LI Fengting, et al. Low-carbon optimal scheduling of integrated energy system considering hydrogen energy storage, ammonia production and carbon capture[J]. Electric Power Automation Equipment, 2024, 44(10): 16-23.
|
| [16] |
王晓燕, 吴书泉. 基于改进粒子群优化算法的源网荷储系统容量配置研究[J]. 综合智慧能源, 2024, 46(9): 28-36.
doi: 10.3969/j.issn.2097-0706.2024.09.004
|
|
WANG Xiaoyan, WU Shuquan. Research on capacity allocation for source-grid-load-storage systems based on improved PSO[J]. Integrated Intelligent Energy, 2024, 46(9): 28-36.
doi: 10.3969/j.issn.2097-0706.2024.09.004
|
| [17] |
郑杰凯, 何山, 韩璐, 等. 计及混合博弈配电网与氢能系统的多综合能源服务商优化调度[J]. 电力自动化设备, 2025, 45(1):67-75.
|
|
ZHENG Jiekai, HE Shan, HAN Lu, et al. Optimal scheduling of multi-integrated energy service provider considering hybrid game-based distribution network and hydrogen energy system[J]. Electric Power Automation Equipment, 2025, 45(1): 67-75.
|
| [18] |
刘浩, 王丹, 贾宏杰, 等. 电-气-氢综合能源系统能碳安全域模型构建与分析[J]. 电网技术, 2025, 49(1):73-83.
|
|
LIU Hao, WANG Dan, JIA Hongjie, et al. Construction and analysis of energy carbon security region model of electric gas hydrogen integrated energy system[J]. Power System Technology, 2025, 49 (1): 73-83.
|
| [19] |
黄子硕, 何桂雄, 闫华光, 等. 园区级综合能源系统优化模型功能综述及展望[J]. 电力自动化设备, 2020, 40(1): 10-18.
|
|
HUANG Zishuo, HE Guixiong, YAN Huaguang, et al. Overview and prospect of optimization model function for community-scale integrated energy system[J]. Electric Power Automation Equipment, 2020, 40(1): 10-18.
|
| [20] |
MIRAKYAN A, DE GUIO R. Modelling and uncertainties in integrated energy planning[J]. Renewable and Sustainable Energy Reviews, 2015, 46: 62-69.
|
| [21] |
王海鸣, 张润之, 周家辉, 等. 离网式风光互补制氢合成绿氨系统容量配置优化分析[J]. 综合智慧能源, 2024, 46(11): 73-82.
doi: 10.3969/j.issn.2097-0706.2024.11.009
|
|
WANG Haiming, ZHANG Runzhi, ZHOU Jiahui, et al. Optimal capacity configuration of off-grid wind-solar hybrid hydrogen production and green ammonia synthesis system[J]. Integrated Intelligent Energy, 2024, 46(11): 73-82.
doi: 10.3969/j.issn.2097-0706.2024.11.009
|
| [22] |
ZHOU G W, BAI M L, LI H L, et al. Multi-objective station-network synergy planning for regional integrated energy system considering energy cascade utilization and uncertainty[J]. Energy Conversion and Management, 2024, 301: 118073.
|
| [23] |
伊利亚·普利高津. 确定性的终结: 时间、混沌与新自然法则[M].湛敏,译. 上海: 上海科技教育出版社, 1998.
|
| [24] |
埃德加·莫兰. 方法:天然之天性[M]. 吴泓缈, 冯学俊, 译. 北京: 北京大学出版社, 2002.
|
| [25] |
休·考特尼. 不确定性管理[M].北京新华信商业风险管理有限责任公司,译. 北京: 中国人民大学出版社, 2004.
|
| [26] |
HUANG Z S, YU H, CHU X Y, et al. A novel optimization model based on game tree for multi-energy conversion systems[J]. Energy, 2018, 150: 109-121.
|