华电技术 ›› 2021, Vol. 43 ›› Issue (11): 138-148.doi: 10.3969/j.issn.1674-1951.2021.11.015
• 未来技术 • 上一篇
收稿日期:
2021-08-06
修回日期:
2021-09-15
出版日期:
2021-11-25
作者简介:
周志华(1966—),女,山东龙口人,教授,博士生导师,博士,从事可再生能源利用以及绿色建筑等方面的研究(E‑mail: zhuazhou@tju.edu.cn)。
基金资助:
ZHOU Zhihua1(), ZHANG Ji2, ZHANG Yunfei1, LIU Junwei1
Received:
2021-08-06
Revised:
2021-09-15
Published:
2021-11-25
摘要:
应对全球气候变化,尽早实现碳中和,加速全社会绿色低碳转型是全人类的共同期望,在此背景下,制冷技术未来的发展将面临重大转变。作为完全被动式的冷却技术,利用宇宙冷能的天空辐射冷却不消耗任何能源且不产生环境污染,是一种极具发展前景的冷却方式。在介绍辐射冷却技术基本理论的基础上,对近几年辐射冷却材料的典型技术及其冷却效果进行了归纳与总结,并进一步阐述了辐射冷却材料在不同领域的研究现状,最后总结了天空辐射冷却技术在碳中和中的应用场景以及目前辐射冷却材料面临的问题与发展趋势。辐射冷却材料的研制与应用将对我国节能减排事业做出巨大贡献。
中图分类号:
周志华, 张吉, 张云飞, 刘俊伟. 碳中和背景下天空辐射冷却技术的应用[J]. 华电技术, 2021, 43(11): 138-148.
ZHOU Zhihua, ZHANG Ji, ZHANG Yunfei, LIU Junwei. Application of radiative sky cooling in achieving carbon neutrality[J]. Huadian Technology, 2021, 43(11): 138-148.
[1] |
ZHANG W, ZHOU T. Increasing impacts from extreme precipitation on population over China with global warming[J]. Science Bulletin, 2020, 65(3):243-252.
doi: 10.1016/j.scib.2019.12.002 |
[2] | International Energy Agency. The future of cooling: Opportunities for energy-efficient air conditioning[EB/OL].(2018-05-01)[2021-08-01]. https://www.iea.org/reports/the-future-of-cooling. |
[3] | 张书繁, 程星星, 王鲁元, 等. 碳中和背景下的钢渣碳酸化固碳路径研究[J]. 华电技术, 2021, 43(6):86-91. |
ZHANG Shufan, CHENG Xingxing, WANG Luyuan, et al. Research on carbon sequestration path of steel slag carbonation under carbon neutralization background[J]. Huadian Technology, 2021, 43(6):86-91. | |
[4] | 中国共产党中央委员会. 中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议[EB/OL].(2020-11-03)[2021-08-01]. http://www.gov.cn/zhengce/2020-11/03/content_5556991.htm. |
[5] | GEETHA N B, VELRAJ R. Passive cooling methods for energy efficient buildings with and without thermal energy storage: A review[J]. Energy Education Science and Technology, 2012, 29(2):913-946. |
[6] |
SMITH G, GENTLE A. Energy savings from the sky[J]. Nature Energy, 2017, 2:17142.
doi: 10.1038/nenergy.2017.142 |
[7] |
BYRNES S J, BLANCHARD R, CAPASSO F. Harvesting renewable energy from Earth's mid-infrared emissions[J]. Proceedings of the National Academy of Sciences, 2014, 111(11):3927-3932.
doi: 10.1073/pnas.1402036111 |
[8] |
ZHAO B, HU M, AO X, et al. Radiative cooling: A review of fundamentals, materials, applications,and prospects[J]. Applied Energy, 2019, 236:489-513.
doi: 10.1016/j.apenergy.2018.12.018 |
[9] | BERGMAN T L, LAVINE A S, INCROPERA FP, et al. Fundamentals of heat and mass transfer[M]. New Jersey:John Wiley & Sons, 2011. |
[10] |
SUN X, SUN Y, ZHOU Z, et al. Radiative sky cooling: Fundamental physics,materials,structures,and applications[J]. Nanophotonics, 2017, 6(5):997-1015.
doi: 10.1515/nanoph-2017-0020 |
[11] |
BAUMGARTNER H, BERNHARD A. Characterizing entropy in statistical physics and in quantum information theory[J]. Foundations of Physics, 2014, 44(10):1107-1123.
doi: 10.1007/s10701-014-9832-y |
[12] | LU X, XU P, WANG H, et al. Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art[J]. Renewable & Sustainable Energy Reviews, 2016, 65:1079-1097. |
[13] |
ZEYGHAMI M, GOSWAMI D Y, STEFANAKOS E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling[J]. Solar Energy Materials and Solar Cells, 2018, 178:115-128.
doi: 10.1016/j.solmat.2018.01.015 |
[14] |
GRANQVIST CG, HJORTSBERG A. Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films[J]. Journal of Applied Physics, 1981, 52:4205-4220.
doi: 10.1063/1.329270 |
[15] | IDSO S B. experimental determination of the radiative properties and climatic consequences of atmospheric dust under nonduststorm conditions[J]. Atmospheric Environment, 1981, 15(7):1251-1259. |
[16] |
BERDAHL P, MARTIN M, SAKKAL F. Thermal performance of radiative cooling panels[J]. International Journal of Heat and Mass Transfer, 1983, 26(6):871-880.
doi: 10.1016/S0017-9310(83)80111-2 |
[17] |
KASTEN F, CZEPLAK G. Solar and terrestrial radiation dependent on the amount and type of cloud[J]. Solar Energy, 1980, 24(2):177-189.
doi: 10.1016/0038-092X(80)90391-6 |
[18] |
ARMSTRONG S, HURLEY W G. A thermal model for photovoltaic panels under varying atmospheric conditions[J]. Applied Thermal Engineering, 2010, 30(11):1488-1495.
doi: 10.1016/j.applthermaleng.2010.03.012 |
[19] |
ZHAO D, AILI A, ZHAI Y, et al. Sub-ambient cooling of water: Toward real-world applications of daytime radiative cooling[J]. Joule, 2019, 3:111-123.
doi: 10.1016/j.joule.2018.10.006 |
[20] | BAO H, YAN C, WANG B, et al. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling[J]. Solar Energy Materials and Solar Cells, 2017, 168:78-84. |
[21] |
RAMAN A P, ANOMA M A, ZHU L, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515:540-544.
doi: 10.1038/nature13883 |
[22] |
KOU J, JURADO Z, CHEN Z, et al. Daytime radiative cooling using near-black infrared emitters[J]. ACS Photonics, 2017, 4(3):626-630.
doi: 10.1021/acsphotonics.6b00991 |
[23] |
ZHAI Y, MA Y, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329):1062-1066.
doi: 10.1126/science.aai7899 |
[24] |
AILI A, WEI Z Y, CHEN Y Z, et al. Selection of polymers with functional groups for daytime radiative cooling[J]. Materials Today Physics, 2019, 10:100127.
doi: 10.1016/j.mtphys.2019.100127 |
[25] |
HUANG Z, RUAN X. Nanoparticle embedded double-layer coating for daytime radiative cooling[J]. International Journal of Heat and Mass Transfer, 2017, 104:890-896.
doi: 10.1016/j.ijheatmasstransfer.2016.08.009 |
[26] |
AO X, HU M, ZHAO B, et al. Preliminary experimental study of a specular and a diffuse surface for daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2019, 191:290-296.
doi: 10.1016/j.solmat.2018.11.032 |
[27] |
ATIGANYANUN S, PLUMLEY J B, HAN S J, et al. Effective radiative cooling by paint-format microsphere-based photonic random media[J]. ACS Photonics, 2018, 5(4):1181-1187.
doi: 10.1021/acsphotonics.7b01492 |
[28] |
LI T, ZHAI Y, HE S, et al. A radiative cooling structural material[J]. Science, 2019, 364(6442):760-763.
doi: 10.1126/science.aau9101 |
[29] |
MANDAL J, FU Y, OVERVIG A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412):315-319.
doi: 10.1126/science.aat9513 |
[30] |
WANG X, LIU X, LI Z, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling[J]. Advanced Functional Materials, 2020, 30(5):1907562.
doi: 10.1002/adfm.v30.5 |
[31] |
YANG P, CHEN C, ZHANG Z M. A dual-layer structure with record-high solar reflectance for daytime radiative cooling[J]. Solar Energy, 2018, 169:316-324.
doi: 10.1016/j.solener.2018.04.031 |
[32] |
GENTLE A R, SMITH G B. Radiative heat pumping from the earth using surface phonon resonant nanoparticles[J]. Nano Letters, 2010, 10(2):373-379.
doi: 10.1021/nl903271d |
[33] |
HOSSAIN M M, JIA B, GU M. A metamaterial emitter for highly efficient radiative cooling[J]. Advanced Optical Materials, 2015, 3(8):1047-1051.
doi: 10.1002/adom.201500119 |
[34] |
CHEN Z, ZHU L, RAMAN A, et al. Radiative cooling to deep sub-freezing temperatures through a 24 h day-night cycle[J]. Nature Communications, 2016, 7:13729.
doi: 10.1038/ncomms13729 |
[35] |
LIU J, ZHANG D, JIAO S, et al. Daytime radiative cooling with clear epoxy resin[J]. Solar Energy Materials and Solar Cells, 2020, 207:110368.
doi: 10.1016/j.solmat.2019.110368 |
[36] |
LIU J, ZHOU Z, ZHANG J, et al. Advances and challenges in commercializing radiative cooling[J]. Materials Today Physics, 2019, 11:100161.
doi: 10.1016/j.mtphys.2019.100161 |
[37] |
REPHAELI E, RAMAN A, FAN S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling[J]. Nano Letters, 2013, 13:1457-1461.
doi: 10.1021/nl4004283 |
[38] |
HOSSAIN MM, JIA B, GU M. A metamaterial emitter for highly efficient radiative cooling[J]. Advanced Optical Materials, 2015, 3:1047-1051.
doi: 10.1002/adom.201500119 |
[39] |
GENTLE AR, SMITH GB. A subambient open roof surface under the mid-summer sun[J]. Advanced Science, 2015, 2(9):1500119.
doi: 10.1002/advs.201500119 |
[40] |
ZOU C J, REN G H, HOSSAIN M, et al. Metal-loaded dielectric resonator metasurfaces for radiative cooling[J]. Advanced Optical Materials, 2017, 5:1700460.
doi: 10.1002/adom.v5.20 |
[41] |
WU D, LIU C, XU Z, et al. The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling[J]. Materials and Design, 2018, 139:104-111.
doi: 10.1016/j.matdes.2017.10.077 |
[42] |
ATIGANYANUN S, PLUMLEY J B, HAN S J, et al. Effective radiative cooling by paint-format microsphere-based photonic random media[J]. ACS Photonics, 2018, 5:1181-1187.
doi: 10.1021/acsphotonics.7b01492 |
[43] |
SUN K, RIEDEL C A, WANG Y, et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft[J]. ACS Photonics, 2018, 5:495-501.
doi: 10.1021/acsphotonics.7b00991 |
[44] | YUAN H, YANG C, SHEN W, et al. Effective, angle-independent radiative cooler based on one-dimensional photonic crystal[J]. Optics Express, 2019, 26:341384. |
[45] |
LIU Y, BAI A, FANG Z, et al. A pragmatic bilayer selective emitter for efficient radiative cooling under direct sunlight[J]. Materials, 2019, 12:1208.
doi: 10.3390/ma12081208 |
[46] | ZHANG J, YUAN J, LIU J, et al. Cover shields for sub-ambient radiative cooling : A literature review[J]. Renewable & Sustainable Energy Reviews, 2021, 143:110959. |
[47] |
AKBARI H, BERDAHL P, LEVINSON R, et, al. Cool coler roofing materials[J]. Building, 2006, 8:61.
doi: 10.3390/buildings8040061 |
[48] |
ZHAO D L, AILI A, ZHAI Y, et al. Radiative sky cooling:Fundamental principles,materials,and applications[J]. Applied Physics Reviews, 2019, 6(2):021306.
doi: 10.1063/1.5087281 |
[49] |
GOLDSTEIN E A, RAMAN A P, FAN S. Sub-ambient non-evaporative fluid cooling with the sky[J]. Nature Energy, 2017, 2(9):17143.
doi: 10.1038/nenergy.2017.143 |
[50] |
ZHANG J, ZHOU Z, QUAN J, et al. A flexible film to block solar radiation for daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2019, 225:111029.
doi: 10.1016/j.solmat.2021.111029 |
[51] |
ZHU L, RAMAN A, WANG K, et al. Radiative cooling of solar cells[J]. Optica, 2014, 1(1):32-38.
doi: 10.1364/OPTICA.1.000032 |
[52] |
LONG L, YANG Y, WANG L. Simultaneously enhanced solar absorption and radiative cooling with thin silica micro-grating coatings for silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 197:19-24.
doi: 10.1016/j.solmat.2019.04.006 |
[53] | ZHU L, RAMAN A, FAN S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. Applied Physical Sciences, 2015, 112(40):12282-12287. |
[54] |
LI W, SHI Y, CHEN K, et al. A comprehensive photonic approach for solar cell cooling[J]. ACS Photonics, 2017, 4(4):774-782.
doi: 10.1021/acsphotonics.7b00089 |
[55] |
KUMAR A, CHOWDHURY A. Effect of multilayer selective radiative anti-reflective coating on crystalline silicon photovoltaics for operating temperature reduction[J]. International Journal of Sustainable Energy, 2020, 39(10):982-996.
doi: 10.1080/14786451.2020.1785466 |
[56] |
KUMAR A, CHOWDHYRY A. Advanced radiative cooler for multi-crystalline silicon solar module[J]. Solar Energy, 2020, 201:751-759.
doi: 10.1016/j.solener.2020.03.065 |
[57] |
ZEYGHAMI M, KHALILI F. Performance improvement of dry cooled advanced concentrating solar power plants using daytime radiative cooling[J]. Energy Conversion and Management, 2015, 106:10-20.
doi: 10.1016/j.enconman.2015.09.016 |
[58] |
ZHAO D, YIN X, XU J, et al. Radiative sky cooling-assisted thermoelectric cooling system for building applications[J]. Energy, 2020, 190:116322.
doi: 10.1016/j.energy.2019.116322 |
[59] |
HU M, PEI G, WANG Q, et al. Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system[J]. Applied Energy, 2016, 179:899-908.
doi: 10.1016/j.apenergy.2016.07.066 |
[60] |
VALL S, MEDRANO M, SOLÉ C, et al. Combined radiative cooling and solar thermal collection: Experimental proof of concept[J]. Energies, 2020, 13:893.
doi: 10.3390/en13040893 |
[61] |
JACOBS A, HEUSINKVEL B, BERKOWICZ S. Passive dew collection in a grassland area[J]. Atmospheric Research, 2008, 87:377-385.
doi: 10.1016/j.atmosres.2007.06.007 |
[62] |
BEYSENS D, MUSELLI M, MILIMOUK I, et al. Application of passive radiative cooling for dew condensation[J]. Energy, 2006, 31(13):2303-2315.
doi: 10.1016/j.energy.2006.01.006 |
[63] |
LI W, DONG M, FAN L, et al. Nighttime radiative cooling for water harvesting from solar panels[J]. ACS Photonics, 2021, 8:269-275.
doi: 10.1021/acsphotonics.0c01471 |
[64] | ZHOU M, SONG H, XU X, et al. Accelerating vapor condensation with daytime radiative cooling [C]//New Concepts Solar Thermal Radiat Convers II, 2018. |
[65] |
DOBSON K D, HODES G, MASTAI Y. Thin semiconductor films for radiative cooling applications[J]. Solar Energy Materials and Solar Cells, 2003, 80(3):283-296.
doi: 10.1016/j.solmat.2003.06.007 |
[66] |
PENG Y C, CHEN J, SONG A Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2):105-112.
doi: 10.1038/s41893-018-0023-2 |
[67] | CAI L L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018,30(35):1802152.1-1802152.7. |
[68] |
RAMAN A P, LI W, FAN S. Generating light from darkness[J]. Joule, 2019, 3:2679-2686.
doi: 10.1016/j.joule.2019.08.009 |
[69] |
XU T, DING X, HUANG Y, et al. An efficient polymer moist-electric generator[J]. Energy and Environmental Science, 2019, 12:972-978.
doi: 10.1039/C9EE00252A |
[70] |
FAN L L, LI W, JIN W L, et al. Maximal nighttime electrical power generation via optimal radiative cooling[J]. Optics Express, 2020, 28(17):25460-25470.
doi: 10.1364/OE.397714 |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[3] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[4] | 刘天阳, 高亚静, 谢典, 赵良. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52. |
[5] | 滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63. |
[6] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
[7] | 王永真, 韩艺博, 韩恺, 韩俊涛, 宋阔, 张兰兰. 基于知识图谱的数据中心综合能源系统研究综述[J]. 综合智慧能源, 2023, 45(7): 1-10. |
[8] | 李宜哲, 王丹, 贾宏杰, 周天烁, 曹逸滔, 张帅, 刘佳委. 综合能源系统能量枢纽多样性建模和典型适用性研究[J]. 综合智慧能源, 2023, 45(7): 22-29. |
[9] | 刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6): 59-65. |
[10] | 赵国涛, 钱国明, 孙艳兵, 丁泉, 朱海东. 碳逸会计在综合能源系统低碳性评价中的应用[J]. 综合智慧能源, 2023, 45(6): 73-80. |
[11] | 刘子祺, 苏婷婷, 何佳阳, 王裕. 基于多目标粒子群算法的配电网储能优化配置研究[J]. 综合智慧能源, 2023, 45(6): 9-16. |
[12] | 周舒心, 范怀林, 胡勋. 生物质基碳材料制备及其在超级电容器电极材料中的应用[J]. 综合智慧能源, 2023, 45(5): 1-12. |
[13] | 范德锴, 付洁, 刘洋, 周春宝, 代建军. 纤维素热解制备高值化学品的研究综述[J]. 综合智慧能源, 2023, 45(5): 24-31. |
[14] | 李敏霞, 侯焙然, 王派, 董丽玮, 田华. 二氧化碳跨临界循环热泵的应用与发展[J]. 综合智慧能源, 2023, 45(4): 12-18. |
[15] | 孙方田, 赵晓晴, 许婉晴, 郝宝如, 谢永华. 基于压缩式换热的中深层地热集中供热系统效益分析[J]. 综合智慧能源, 2023, 45(4): 69-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||