综合智慧能源 ›› 2022, Vol. 44 ›› Issue (8): 25-32.doi: 10.3969/j.issn.2097-0706.2022.08.002
罗丽琦1(), 王月2(
), 钟海军2,*(
), 李庆勋2(
), 谢广元1(
), 王绍荣1,*(
)
收稿日期:
2022-06-06
修回日期:
2022-08-10
出版日期:
2022-08-25
通讯作者:
钟海军(1982),男,正高级工程师,博士,从事燃料电池、催化剂方面的研究, zhonghaijun@petrochina.com.cn。作者简介:
罗丽琦(1998),女,在读硕士研究生,从事固体氧化物燃料电池热电联供系统模拟计算等方面的研究, ts20040107a31@cumt.cn;基金资助:
LUO Liqi1(), WANG Yue2(
), ZHONG Haijun2,*(
), LI Qingxun2(
), XIE Guangyuan1(
), WANG Shaorong1,*(
)
Received:
2022-06-06
Revised:
2022-08-10
Published:
2022-08-25
摘要:
研究了一种利用Aspen Plus软件模拟固体氧化物燃料电池热电联供(SOFC-CHP)系统的方法,并以1 kW级系统为例进行了计算,该方法可用于快速判断不同燃料及电堆功率要求下的SOFC-CHP系统热电供应情况。试验结果表明,在理想状态下SOFC的净发电效率可达51%,热效率高达42%,CO2排放摩尔分数高达70%。所提方法可极大缩短计算速度,对进一步优化系统效率很有帮助。
中图分类号:
罗丽琦, 王月, 钟海军, 李庆勋, 谢广元, 王绍荣. 固体氧化物燃料电池热电联供系统设计[J]. 综合智慧能源, 2022, 44(8): 25-32.
LUO Liqi, WANG Yue, ZHONG Haijun, LI Qingxun, XIE Guangyuan, WANG Shaorong. Design of the CHP system integrated with SOFC[J]. Integrated Intelligent Energy, 2022, 44(8): 25-32.
表4
SOFC-CHP系统各流股热力学参数
流股序号 | 温度/ ℃ | 摩尔焓/(kJ·mol-1) | 摩尔熵/ [kJ·(mol·K)-1] | 焓流量/kW | 摩尔流量/ (mol·min-1) |
---|---|---|---|---|---|
1 | 25.000 | -74.540 | -0.081 | -0.178 | 0.143 |
2 | 281.314 | -184.670 | -0.028 | -1.542 | 0.501 |
3 | 700.000 | -165.863 | -0.003 | -1.385 | 0.501 |
4 | 699.596 | -71.432 | 0.046 | -0.903 | 0.758 |
5 | 858.573 | -175.334 | 0.033 | -2.300 | 0.787 |
6 | 1 031.476 | -214.050 | 0.053 | -6.264 | 1.756 |
7 | 802.714 | -224.892 | 0.044 | -6.581 | 1.756 |
8 | 685.197 | -230.257 | 0.039 | -6.738 | 1.756 |
9 | 622.448 | -233.058 | 0.036 | -6.820 | 1.756 |
10 | 93.759 | -254.450 | 0.000 | -7.446 | 1.756 |
11 | 60.000 | -266.488 | -0.035 | -7.799 | 1.756 |
12 | 60.000 | -264.308 | 0.010 | -4.898 | 1.112 |
13 | 60.000 | -264.308 | 0.010 | -0.933 | 0.212 |
14 | 60.000 | -264.308 | 0.010 | -3.965 | 0.900 |
15 | 25.000 | -0.009 | 0.004 | -0.001 | 4.490 |
16 | 570.000 | 16.595 | 0.035 | 1.242 | 4.490 |
17 | 700.000 | 20.835 | 0.040 | 1.559 | 4.490 |
18 | 25.000 | -287.741 | -0.168 | -3.885 | 0.810 |
19 | 91.840 | -282.275 | -0.151 | -3.811 | 0.810 |
20 | 200.000 | -235.893 | -0.029 | -3.185 | 0.810 |
21 | 200.000 | -235.893 | -0.029 | -0.511 | 0.130 |
22 | 200.000 | -235.893 | -0.029 | -2.673 | 0.680 |
23 | 400.000 | -228.660 | -0.017 | -2.591 | 0.680 |
24 | 400.000 | -228.660 | -0.017 | -1.227 | 0.322 |
25 | 400.000 | -228.660 | -0.017 | -1.364 | 0.358 |
26 | 25.000 | -287.741 | -0.168 | -1 594.1 | 332.410 |
27 | 25.780 | -287.678 | -0.168 | -1 593.7 | 332.410 |
28 | 858.573 | 26.084 | 0.044 | 1.871 | 4.304 |
29 | 656.400 | 19.364 | 0.038 | 1.389 | 4.304 |
30 | 95.112 | 2.043 | 0.009 | 0.147 | 4.304 |
31 | 60.000 | 1.015 | 0.006 | 0.073 | 4.304 |
32 | 25.000 | -0.010 | -0.001 | 0.000 | 0.169 |
[1] | 任喜洋, 邓锋, 高兵, 等. 推动能源资源结构向绿色低碳转型[J]. 中国国土资源经济, 2021, 34(12): 48-54,76. |
REN Xiyang, DENG Feng, GAO Bing, et al. Promote the transformation of energy and resource structure to green and low-carbon development[J]. Natural Resource Economics of China, 2021, 34(12): 48-54,76. | |
[2] | 王志峰, 何雅玲, 康重庆, 等. 明确太阳能热发电战略定位促进技术发展[J]. 华电技术, 2021, 43(11): 1-4. |
WANG Zhifeng, HE Yaling, KANG Chongqing, et al. Strategic positioning of solar thermal power generation to promote technological progress[J]. Huadian Technology, 2021, 43(11): 1-4. | |
[3] | 马文会, 于洁, 陈秀华. 固体氧化物燃料电池新型材料[J]. 分析化学, 2014, 42 (11): 1645. |
MA Wenhui, YU Jie, CHENG Xiuhua. New materials for solid oxide fuel cells[J]. Chinese Journal of Analytical Chemistry, 2014, 42 (11): 1645. | |
[4] | 胡小夫, 汪洋, 田立, 等. 中高温SOFC/MGT联合发电技术研究进展[J]. 华电技术, 2019, 41(8): 1-5. |
HU Xiaofu, WANG Yang, TIAN Li, et al. Progress in intermediate and high temperature SOFC/MGT combined power generation technology[J]. Huadian Technology, 2019, 41(8): 1-5. | |
[5] | 刘合, 梁坤, 张国生, 等. 碳达峰、碳中和约束下我国天然气发展策略研究[J]. 中国工程科学, 2021, 23(6):33-42. |
LIU He, LIANG Kun, ZHANG Guosheng, et al. China's natural gas development strategy under the constraints of carbon peak and carbon neutrality[J]. Strategic Study of CAE, 2021, 23(6):33-42. | |
[6] | 张俊锋, 许文娟, 王跃锜, 等. 面向碳中和的中国碳排放现状调查与分析[J]. 华电技术, 2021, 43(10): 1-10. |
ZHANG Junfeng, XU Wenjuan, WANG Yueqi, et al. Investigation and analysis on carbon emission status in China on the path to carbon neutrality[J]. Huadian Technology, 2021, 43(10): 1-10. | |
[7] | 殷建平, 王泽鹏. 我国发展天然气发电产业的战略选择——天然气热电联产与气电调峰比较研究[J]. 价格理论与实践, 2019(11): 11-14. |
YIN Jianping, WANG Zepeng. China's strategic choice for developing natural gas power generation industry—Comparative study on natural gas cogeneration and gas electricity peak shaving[J]. Price:Theory & Practice, 2019(11): 11-14. | |
[8] |
ZENG R, GUO B, ZHANG X, et al. Study on thermodynamic performance of SOFC-CCHP system integrating ORC and double-effect ARC[J]. Energy Conversion and Management, 2021, 242: 114326.
doi: 10.1016/j.enconman.2021.114326 |
[9] | 宋鹏飞, 单彤文, 李又武, 等. 以天然气为原料的燃料电池分布式供能技术路径研究[J]. 现代化工, 2020, 40(9): 14-19. |
SONG Pengfei, SHANG Tongwen, LI Youwu, et al. Founding paths to supply energy in a distributed way by fuel cell with natural gas as raw materials[J]. Modern Chemical Industry, 2020, 40(9): 14-19. | |
[10] | 张尹路, 李文甲, 康利改. 智慧供热在分布式燃气供热中的应用与优化提升[J]. 华电技术, 2020, 42(11): 14-20. |
ZHANG Yinlu, LI Wenjia, KANG Ligai. Application and optimization of intelligent heating in distribute gas heating systems[J]. Huadian Technology, 2020, 42(11): 14-20. | |
[11] | 朱海东, 郝浩, 郑剑, 等. 基于冷热电多能互补的园区综合能源系统设计[J]. 华电技术, 2021, 43(4): 34-38. |
ZHU Haidong, HAO Hao, ZHENG Jian, et al. Design of integrated energy system for parks based on complementation of cold, heat and electricity[J]. Huadian Technology, 2021, 43(4): 34-38. | |
[12] |
ZHANG S, LIU H, LIU M, et al. An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization[J]. Applied Thermal Engineering, 2017, 121: 314-324.
doi: 10.1016/j.applthermaleng.2017.04.066 |
[13] |
GHOLAMIAN E, ZARE V. A comparative thermodynamic investigation with environmental analysis of SOFC waste heat to power conversion employing Kalina and Organic Rankine Cycles[J]. Energy Conversion and Management, 2016, 117: 150-161.
doi: 10.1016/j.enconman.2016.03.011 |
[14] |
PENG M Y P, CHEN C, PENG X, et al. Energy and exergy analysis of a new combined concentrating solar collector, solid oxide fuel cell, and steam turbine CCHP system[J]. Sustainable Energy Technologies and Assessments, 2020, 39: 100713.
doi: 10.1016/j.seta.2020.100713 |
[15] |
PALOMBA V, FERRARO M, FRAZZICA A, et al. Experimental and numerical analysis of a SOFC-CHP system with adsorption and hybrid chillers for telecommunication applications[J]. Applied Energy, 2018, 216: 620-633.
doi: 10.1016/j.apenergy.2018.02.063 |
[16] |
LIU Y, HAN J, YOU H. Performance analysis of a CCHP system based on SOFC/GT/CO2 cycle and ORC with LNG cold energy utilization[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29700-29710.
doi: 10.1016/j.ijhydene.2019.02.201 |
[17] |
PARK S K, AHN J H, KIM T S. Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture[J]. Applied Energy, 2011, 88(9): 2976-2987.
doi: 10.1016/j.apenergy.2011.03.031 |
[18] |
MEHRPOOYA M, SADEGHZADEH M, RAHIMI A, et al. Technical performance analysis of a Combined Cooling Heating and Power (CCHP) system based on Solid Oxide Fuel Cell (SOFC) technology—A building application[J]. Energy Conversion and Management, 2019, 198: 111767.
doi: 10.1016/j.enconman.2019.06.078 |
[19] |
MEHR A S, MOSAYEBNEZHAD M, LANZINI A, et al. Thermodynamic assessment of a novel SOFC based CCHP system in a wastewater treatment plant[J]. Energy, 2018, 150: 299-309.
doi: 10.1016/j.energy.2018.02.102 |
[20] |
HOU Q, ZHAO H, YANG X. Economic performance study of the integrated MR-SOFC-CCHP system[J]. Energy, 2019, 166: 236-245.
doi: 10.1016/j.energy.2018.10.072 |
[21] | Plus A. 11.1 user guide[J]. Aspen Technology, 2011, 2001. |
[22] |
ZHANG W, CROISET E, DOUGLAS P L, et al. Simulation of a tubular solid oxide fuel cell stack using Aspen PlusTM unit operation models[J]. Energy Conversion and Management, 2005, 46(2): 181-196.
doi: 10.1016/j.enconman.2004.03.002 |
[23] |
SONG T W, SOHN J L, KIM J H, et al. Performance analysis of a tubular solid oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model[J]. Journal of Power Sources, 2005, 142(1-2): 30-42.
doi: 10.1016/j.jpowsour.2004.10.011 |
[24] |
BAE Y, LEE S, YOON K J, et al. Three dimensional dynamic modeling and transport analysis of solid oxide fuel cells under electrical load change[J]. Energy Conversion and Management, 2018, 165: 405-418.
doi: 10.1016/j.enconman.2018.03.064 |
[25] |
CHAN S H, KHOR K A, XIA Z T. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness[J]. Journal of Power Sources, 2001, 93(1-2): 130-140.
doi: 10.1016/S0378-7753(00)00556-5 |
[26] |
MEHR A S, LANZINI A, SANTARELLI M, et al. Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology:System design, fuel types, modeling and analysis approaches[J]. Energy, 2021, 228: 120613.
doi: 10.1016/j.energy.2021.120613 |
[27] |
DANESHPOUR R, MEHRPOOYA M. Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production[J]. Energy Conversion and Management, 2018, 176: 274-286.
doi: 10.1016/j.enconman.2018.09.033 |
[28] |
MEHRPOOYA M, DEHGHANI H, MOOSAVIAN S M A. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system[J]. Journal of Power Sources, 2016, 306: 107-123.
doi: 10.1016/j.jpowsour.2015.11.103 |
[29] |
MEHRPOOYA M, GHORBANI B, JAFARI B, et al. Modeling of a single cell micro proton exchange membrane fuel cell by a new hybrid neural network method[J]. Thermal Science and Engineering Progress, 2018, 7: 8-19.
doi: 10.1016/j.tsep.2018.04.012 |
[30] |
MEHRPOOYA M, AKBARPOUR S, VATANI A, et al. Modeling and optimum design of hybrid solid oxide fuel cell-gas turbine power plants[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21196-21214.
doi: 10.1016/j.ijhydene.2014.10.077 |
[31] |
WEINLAENDER C, ALBERT J, GABER C, et al. Investigation of subsystems for combination into a sofc-based CCHP system[J]. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(2):021003.
doi: 10.1115/1.4041727 |
[1] | 杨磊, 王睿, 马丽丽, 孙宁, 李雪莲, 陈婷, 王绍荣, 史彩霞. 钙和铁共掺杂PrBaCo2O5+δ作为固体氧化物燃料电池阴极的研究[J]. 综合智慧能源, 2024, 46(7): 47-52. |
[2] | 闫雪玲, 潘翔, 任柯柯, 黄容, 程继贵, 洪涛. 管式质子陶瓷膜燃料电池的制备和性能研究[J]. 综合智慧能源, 2022, 44(8): 86-90. |
[3] | 许阳森, 张磊, 毕磊. 中温质子导体固体氧化物燃料电池的发展与挑战[J]. 综合智慧能源, 2022, 44(8): 68-74. |
[4] | 杨莹, 张雁祥, 闫牧夫. 中低温固体氧化物燃料电池电解质制备方法研究进展[J]. 综合智慧能源, 2022, 44(8): 50-57. |
[5] | 朱沙沙, 李宗宝, 邓雅恬, 王欣, 贾礼超. 合金纳米颗粒在碳氢燃料SOFC阳极中的应用[J]. 综合智慧能源, 2022, 44(8): 33-42. |
[6] | 高圆, 李智, 李甲鸿, 高九涛, 李成新, 李长久. 金属支撑固体氧化物燃料电池技术进展[J]. 综合智慧能源, 2022, 44(8): 1-24. |
[7] | 彭占磊, 杨之乐, 杨文强, 李慷. 电化学储能参与电力系统规划运行方法综述[J]. 综合智慧能源, 2022, 44(6): 37-44. |
[8] | 张立栋, 陈怡冰, 龚明, 赵桦粮, 王欣, 黄宏艳. 质子交换膜电解水制氢影响因素的过程模拟[J]. 综合智慧能源, 2022, 44(5): 88-94. |
[9] | 吴林芮, 刘璐, 孟瑜, 李岩, 胡南, 徐海龙, 陈美琦, 郑武康. 锌-空气电池阴极碳基催化剂材料研究进展[J]. 综合智慧能源, 2022, 44(4): 65-70. |
[10] | 王丽, 李蓓, 张帆, 陈金伟. 基于增益调度模型预测控制的SOFC-GT混合动力系统温度控制[J]. 综合智慧能源, 2022, 44(10): 42-49. |
[11] | 蓝静, 朱继忠, 李盛林, 史普鑫, 郭万舒, 史沛然, 江长明. 考虑碳惩罚的电化学储能消纳风光与调峰研究[J]. 综合智慧能源, 2022, 44(1): 9-17. |
[12] | 蒋文坤, 韩颖慧, 薛智文, 朱勇奇, 徐艳梅. 多能互补能源系统中储能原理及其应用[J]. 综合智慧能源, 2022, 44(1): 63-71. |
[13] | 王朝阳, 刘明, 赵永亮, 种道彤, 严俊杰. 绝热条件下固体氧化物燃料电池的瞬态电化学特性[J]. 华电技术, 2021, 43(7): 30-36. |
[14] | 童家麟, 洪庆, 吕洪坤, 吴瑞康, 应光耀. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7): 17-23. |
[15] | 冯力勇,张云. 考虑电池能效的电网侧电化学储能电站最优功率控制策略研究[J]. 华电技术, 2020, 42(4): 37-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||