综合智慧能源 ›› 2023, Vol. 45 ›› Issue (1): 58-66.doi: 10.3969/j.issn.2097-0706.2023.01.007
赵鑫(), 钱本华(
), 王睿*(
), 柳虎(
), 翟硕(
), 赵梓亦(
)
收稿日期:
2022-11-24
修回日期:
2023-01-10
出版日期:
2023-01-25
通讯作者:
*王睿(1993) ,男,讲师,博士,从事能源互联网中分布式电源的协同优化及其电磁时间尺度稳定性分析等研究, wangrui@ise.neu.edu.cn。作者简介:
赵鑫(1996),男,在读硕士研究生,从事电力系统稳定性分析的研究,1127100562@qq.com;基金资助:
ZHAO Xin(), QIAN Benhua(
), WANG Rui*(
), LIU Hu(
), ZHAI Shuo(
), ZHAO Ziyi(
)
Received:
2022-11-24
Revised:
2023-01-10
Published:
2023-01-25
Supported by:
摘要:
为促进能源转型、优化能源结构,我国可再生能源在电力系统中的占比不断增加。但新能源机组发电具有随机性、波动性,其并网会给电网的安全稳定运行带来负面影响。电化学储能技术具有快速响应、灵活调节系统功率的特性,为电力系统的安全稳定运行提供了保障。介绍了储能技术的类型以及目前已落地的电化学储能工程项目;分别从频率稳定、静态电压稳定以及暂态电压稳定3个方面阐述了储能在电力系统稳定控制中的作用;对电动汽车换电站以及电动汽车参与电力系统调节进行了展望。储能将成为电力系统的关键组成部分。
中图分类号:
赵鑫, 钱本华, 王睿, 柳虎, 翟硕, 赵梓亦. 电化学储能参与电网安全稳定控制的研究综述[J]. 综合智慧能源, 2023, 45(1): 58-66.
ZHAO Xin, QIAN Benhua, WANG Rui, LIU Hu, ZHAI Shuo, ZHAO Ziyi. Review of researches on grid security and stability control with the participation of electrochemical energy storage[J]. Integrated Intelligent Energy, 2023, 45(1): 58-66.
表2
国内外电化学储能项目
项目名称 | 储能规模 | 储能类型 | 应用类型 | |
---|---|---|---|---|
功率/MW | 容量/(MW·h) | |||
新疆英吉沙电化学储能项目 | 3.0 | 6.0 | 磷酸铁锂电池 | 电源侧 |
新昌电厂电源侧储能电站项目 | 16.0 | 64.0 | 磷酸铁锂电池 | 电源侧 |
国电投狮子坪风电化学储能项目 | 4.8 | 4.8 | 磷酸铁锂电池 | 电源侧 |
美国加州Gateway储能项目 | 250.0 | 250.0 | 锂电池 | 电网侧 |
澳大利亚南澳Tesla储能电站 | 100.0 | 129.0 | 锂电池 | 电网侧 |
河南周口勇铭储能电站 | 5.0 | 10.0 | 磷酸铁锂电池 | 电源侧 |
美国弗吉尼亚州Beech Ridge储能站 | 31.5 | 12.0 | 锂电池 | 电网侧 |
洛阳黄龙变电站电池储能示范工程 | 9.6 | 9.6 | 磷酸铁锂电池 | 电网侧 |
[1] |
LIU J Y, ZHANG Y J. Has carbon emissions trading system promoted non-fossil energy development in China[J]. Applied Energy, 2021, 302:117613.
doi: 10.1016/j.apenergy.2021.117613 |
[2] |
LISERRE M, SAUTER T, HUNG J Y. Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics[J]. Industrial Electronics Magazine,IEEE, 2010, 4(1):18-37.
doi: 10.1109/MIE.2010.935861 |
[3] | 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1):1-9. |
SHU Yinbiao, ZHANG Zhigang, GUO Jianbo, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1):1-9. | |
[4] | 钟庆昌, 托马斯·霍尔尼克. 新能源接入智能电网的逆变控制关键技术[M]. 北京: 机械工业出版社, 2016. |
[5] | 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术, 2021, 10(5):1679-1686. |
HE Linxuan, LI Wenyan. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage[J]. Energy Storage Science and Technology, 2021, 10(5):1679-1686. | |
[6] | 和婧. 抽水蓄能与电化学储能联合参与电网负荷频率控制技术研究[D]. 昆明: 昆明理工大学, 2021. |
HE Jing. Study on load frequency control of the power grid with PPS and electrochemical energy storage[D]. Kunming: Kunming University of Science and Technology, 2021. | |
[7] | 刘倩. 基于超级电容与水力机组结合的快速调频策略研究[D]. 西安: 西安理工大学, 2021. |
LIU Qian. Research on fast frequency regulation strategy based on the combination of supercapacitor and hydraulic unit[D]. Xi'an: Xi'an University of Technology, 2021. | |
[8] | 李盼, 杨晨, 陈雯, 等. 压缩空气储能系统动态特性及其调节系统[J]. 中国电机工程学报, 2020, 40(7):2295-2305,2408. |
LI Pan, YANG Chen, CHEN Wen, et al. Dynamic characteristics of compressed air energy storage system and the regulation system[J]. Proceedings of the CSEE, 2020, 40(7):2295-2305,2408. | |
[9] |
ARANI A. A K, GHAREHPETIAN G B, ABEDI M. Review on energy storage systems control methods in microgrids[J]. International Journal of Electrical Power, 2019, 107:745-757.
doi: 10.1016/j.ijepes.2018.12.040 |
[10] |
MEXIS I, TODESCHINI G. Battery energy storage systems in the United Kingdom: A review of current state-of-the-art and future applications[J]. Energies, 2020, 13(14):3616.
doi: 10.3390/en13143616 |
[11] |
FRATE G F, FERRARI L, DESIDERI U. Energy storage for grid-scale applications:Technology review and economic feasibility analysis[J]. Renewable Energy, 2020, 163:1754-1772.
doi: 10.1016/j.renene.2020.10.070 |
[12] | HINAl F A, PALANISAMY K. Battery energy storage applications in wind integrated systems—A review[C]// 2014 International Conference on Smart Electric Grid.Guntur, 2014:1-8. |
[13] |
ZHANG B, YAN X, LI D, et al. Stable operation and small-signal analysis of multiple parallel dg inverters based on a virtual synchronous generator scheme[J]. Energies, 2018, 11(1):203.
doi: 10.3390/en11010203 |
[14] | 张波, 张晓磊, 贾焦心, 等. 基于惯量支撑和一次调频需求的VSG储能单元配置方法[J]. 电力系统自动化, 2019, 43(23):202-209. |
ZHANG Bo, ZHANG Xiaolei, JIA Jiaoxin, et al. Configuration method for energy storage unit of virtual synchronous generator based on requirements of inertia support and primary frequency regulation[J]. Automation of Electric Power Systems, 2019, 43(23):202-209. | |
[15] | 陶亮, 程军照, 王文玺, 等. 虚拟同步发电机参数设计及优化方法[J]. 电力系统保护与控制, 2018, 46(12):128-135. |
TAO Liang, CHENG Junzhao, WANG Wenxi, et al. Methods of parameter design and optimization in virtual synchronous generator technology[J]. Power System Protection and Control, 2018, 46(12):128-135. | |
[16] |
LI D, ZHU Q, LIN S, et al. A Self-adaptive inertia and damping combination control of VSG to support frequency stability[J]. IEEE Transactions on Energy Conversion, 2017, 32(1):397-398.
doi: 10.1109/TEC.2016.2623982 |
[17] | 赵伟, 李雄, 乔仁飞, 等. 基于混合储能的孤岛微网VSG 控制策略[J]. 电力系统保护与控制, 2021, 49(12):33-40. |
ZHAO Wei, LI Xiong, QIAO Renfei, et al. VSG control strategy of an isolated microgrid based on hybrid energy storage[J]. Power System Protection and Control, 2021, 49(12):33-40. | |
[18] | 李吉祥, 赵晋斌, 李芬, 等. 导入静态转子和虚拟调节阀的虚拟同步电机控制策略[J]. 电网技术, 2018, 42(6):1922-1928. |
LI Jixiang, ZHAO Jinbin, LI Fen, et al. Control Strategy of virtual synchronous generator by performing static rotor and virtual regulating valve[J]. Power System Technology, 2018, 42(6):1922-1928. | |
[19] | 董锴, 蔡新雷, 崔艳林, 等. 基于马尔科夫链的电动汽车聚合建模及多模式调频控制策略[J]. 电网技术, 2022, 46(2):622-631. |
DONG Kai, CAI Xinlei, CUI Yanlin, et al. Aggregation modeling based on Markov chain and multi-mode control strategies of aggregated electric vehicles for frequency regulation[J]. Power System Technology, 2022, 46(2):622-631. | |
[20] |
KEMPTON W, TOMIC J. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy[J]. Journal of Power Sources, 2005, 144(1) :280-294.
doi: 10.1016/j.jpowsour.2004.12.022 |
[21] | 刘晓飞, 张千帆, 崔淑梅. 电动汽车V2G技术综述[J]. 电工技术学报, 2012, 27(2):121-127. |
LIU Xiaofei, ZHANG Qianfan, CUI Shumei. Review of electric vehicle V2G technology[J]. Transactions of China Electrotechnical Society, 2012, 27(2):121-127. | |
[22] | BROOKS A N. Vehicle-to-grid demonstration project:Grid regulation ancillary service with a battery electric vehicle[R]. AC Propulsion, 2002. |
[23] |
KEMPTON W, TOMIC J. Vehicle-to-grid power fundamentals: Calculating capacity and net revenue[J]. Journal of Power Sources, 2005, 144(1):268-279.
doi: 10.1016/j.jpowsour.2004.12.025 |
[24] |
TOMIC J, KEMPTON W. Using fleets of electric-drive vehicles for grid support[J]. Journal of Power Sources, 2007, 168(2) :459-468.
doi: 10.1016/j.jpowsour.2007.03.010 |
[25] | 翁国庆, 张有兵, 戚军, 等. 多类型电动汽车电池集群参与微网储能的V2G可用容量评估[J]. 电工技术学报, 2014, 29(8):36-45. |
WENG Guoqing, ZHANG Youbing, QI Jun, et al. Evaluation for V2G available capacity of battery groups of electric vehicles as energy storage elements in microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(8):36-45. | |
[26] | 张立岩, 赵俊华, 文福拴, 等. 基于线性矩阵不等式的电动汽车网络化鲁棒控制[J]. 电力系统自动化, 2013, 37(20):54-62,70. |
ZHANG Liyan, ZHAO Junhua, WEN Fushuan, et al. Networked robust control of electric vehicles based on linear matrix inequalities[J]. Automation of Electric Power Systems, 2013, 37(20):54-62,70. | |
[27] |
刘静, 史梦鸽, 胡永锋. 含电池储能系统的智能楼宇多阶段能量管理策略[J]. 综合智慧能源, 2022, 44(3):29-37.
doi: 10.3969/j.issn.2097-0706.2022.03.005 |
LIU Jing, SHI Mengge, HU Yongfeng. Multi-stage energy management strategy for smart buildings with BESS[J]. Integrated Intelligent Energy, 2022, 44(3):29-37.
doi: 10.3969/j.issn.2097-0706.2022.03.005 |
|
[28] |
MU Y F, WU J Z, EKANAYAKE J, et al. Primary frequency response from electric vehicles in the Great Britain power system[J]. IEEE Transactions on Smart Grid, 2013, 4(2):1142-1150.
doi: 10.1109/TSG.2012.2220867 |
[29] |
OTA Y, TANIGUCHI H, NAKAJIMA T, et al. Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging[J]. IEEE Transactions on Smart Grid, 2012, 3(1):559-564.
doi: 10.1109/TSG.2011.2167993 |
[30] |
LIU H, HU Z, SONG Y, et al. Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands[J]. IEEE Transactions on Power Systems, 2013, 28(3):3480-3489.
doi: 10.1109/TPWRS.2013.2252029 |
[31] | 赵冬梅, 任耀宇, 程雪婷. 低压配电网分布式光伏接纳能力分析[J]. 现代电力, 2021, 38(4):392-403. |
ZHAO Dongmei, REN Yaoyu, CHENG Xueting. Analysis of distributed photovoltaic acceptance capacity in low-voltage distribution network[J]. Modern Electric Power, 2021, 38(4):392-403. | |
[32] | 张琨, 葛少云, 刘洪, 等. 智能配电系统环境下的电动汽车调频竞标模型[J]. 电网技术, 2016, 40(9):2588-2595. |
ZHANG Kun, GE Shaoyun, LIU Hong, et al. A bidding model for electric vehicles to provide regulation services based on intelligent distribution system[J]. Power System Technology, 2016, 40(9):2588-2595. | |
[33] | 刘辉, 魏岩岩, 汪旎, 等. 电动汽车入网一次调频控制策略研究[J]. 电力系统保护与控制, 2015, 43(23):90-95. |
LIU Hui, WEI Yanyan, WANG Ni, et al. V2G control for EVs participating in primary frequency regulation[J]. Power System Protection and Control, 2015, 43(23):90-95. | |
[34] | 孙杰, 赵国瑾, 刘顺桂, 等. 基于改进时间延迟环节的集群电动汽车参与电网调频的动态特性研究[J]. 电网技术, 2019, 43(2):470-479. |
SUN Jie, ZHAO Guojin, LIU Shungui, et al. Research on dynamic characteristics of electric vehicles participating in frequency regulation of power system based on improved time delay[J]. Power System Technology, 2019, 43(2):470-479. | |
[35] | 张谦, 李晨, 周林, 等. 计及电动汽车实时可控能量动态变化的负荷频率控制[J]. 电力自动化设备, 2017, 37(8):234-241. |
ZHANG Qian, LI Chen, ZHOU Lin, et al. Load frequency control considering dynamic change of real-time controllable EV energy[J]. Electric Power Automation Equipment, 2017, 37(8) :234-241. | |
[36] |
CHENG L, CHANG Y, HUANG R. Mitigating voltage problem in distribution system with distributed solar generation using electric vehicles[J]. IEEE Transactions on Sustainable Energy, 2015, 6(4):1475-1484.
doi: 10.1109/TSTE.2015.2444390 |
[37] | 朱峰, 李端超, 汪德星, 等. 电力系统调频与自动发电控制[M]. 北京: 中国电力出版社, 2006. |
[38] | Energy storage—A cheaper, faster,& cleaner alternative to conventional frequency regulation[R]. California: California Energy Storage Alliance, 2011. |
[39] | 常烨骙, 李卫东, 巴宇, 等. 基于运行安全的频率控制性能评价新方法[J]. 电工技术学报, 2019, 34(6):1218-1229. |
CHANG Yekui, LI Weidong, BA Yu, et al. A new method for frequency control performance assessment on operation security[J]. Transactions of China Electrotechnical Society, 2019, 34(6):1218-1229. | |
[40] |
KNAP V, CHAUDHARY S, STROE D I, et al. Sizing of an energy storage system for grid inertial response and primary frequency reserve[J]. IEEE Transactions on Power Systems, 2016, 31(5):3447-3456.
doi: 10.1109/TPWRS.2015.2503565 |
[41] | 邓霞, 孙威, 肖海伟. 储能电池参与一次调频的综合控制方法[J]. 高电压技术, 2018, 44(4):1157-1165. |
DENG Xia, SUN Wei, XIAO Haiwei. Integrated control strategy of battery energy storage system in primary frequency regulation[J]. High Voltage Engineering, 2018, 44(4):1157-1165. | |
[42] | 杨水丽, 李建林, 李蓓, 等. 电池储能系统参与电网调频的优势分析[J]. 电网与清洁能源, 2013, 29(2):43-47. |
YANG Shuili, LI Jianlin, LI Bei, et al. Advantages of battery energy storage system for frequency regulation[J]. Power System and Clean Energy, 2013, 29(2):43-47. | |
[43] | 刘闯, 孙同, 蔡国伟, 等. 基于同步机三阶模型的电池储能电站主动支撑控制及其一次调频贡献力分析[J]. 中国电机工程学报, 2020, 40(15):4854-4866. |
LIU Chuang, SUN Tong, CAI Guowei, et al. Third-order synchronous machine model based active support control of battery storage power plant and its contribution analysis for primary frequency response[J]. Proceedings of the CSEE, 2020, 40(15):4854-4866. | |
[44] | 李欣然, 黎淑娟, 黄际元, 等. 储能电池参与电网二次调频的高效性评估[J]. 太阳能学报, 2019, 40(9):2608-2615. |
LI Xinran, LI Shujuan, HUANG Jiyuan, et al. Efficiency analysis of energy storage battery participating in secondary frequency regulation[J]. Acta Energiae Solaris Sinica, 2019, 4(9):2608-2615. | |
[45] |
陈逸珲, 林令淇, 田鑫, 等. 三级式风电AVC协调控制策略[J]. 综合智慧能源, 2022, 44(4):20-27.
doi: 10.3969/j.issn.2097-0706.2022.04.003 |
CHEN Yihui, LIN Lingqi, TIAN Xin, et al. Three-level wind power AVC coordinated control strategy[J]. Integrated Intelligent Energy, 2022, 44(4):20-27.
doi: 10.3969/j.issn.2097-0706.2022.04.003 |
|
[46] |
WANG L, DUBEY A, GEBREMEDHIN A H, et al. MPC-based decentralized voltage control in power distribution systems with EV and PV coordination[J]. IEEE Transactions on Smart Grid, 2022, 13(4):2908-2919.
doi: 10.1109/TSG.2022.3156115 |
[47] | 李翠萍, 东哲民, 李军徽, 等. 配电网分布式储能集群调压控制策略[J]. 电力系统自动化, 2021, 45(4):133-141. |
LI Cuiping, DONG Zhemin, LI Junhui, et al. Control strategy of voltage regulation for distributed energy storage cluster in distribution network[J]. Automation of Electric Power Systems, 2021, 45(4):133-141. | |
[48] |
SHAH R, MITHULANANTHAN N, LEE K Y. Large-scale PV plant with a robust controller considering power oscillation damping[J]. IEEE Transactions on Energy Conversion, 2013, 28(1):106-116
doi: 10.1109/TEC.2012.2230328 |
[49] | 王睿, 孙秋野, 张化光. 信息能源系统的信-物融合稳定性分析[J]. 自动化学报, 2022, 11(23):1-10. |
WANG Rui, SUN Qiuye, ZHANG Huaguang. Stability analysis of cyber-physical fusion in cyber-energy systems[J]. Acta Automatica Sinica, 2022, 11(23):1-10. | |
[50] | 侯建兰, 马冰, 刘育权, 等. 电网暂态电压稳定的主要影响因素量化分析[J]. 电网与清洁能源, 2016, 32(6):28-34. |
HOU Jianlan, MA Bing, LIU Yuquan, et al. Quantitative analysis of main factors influencing transient voltage stability of power grid[J]. Power System and Clean Energy, 2016, 32(6):28-34. | |
[51] | 欧阳曾恺. 风储联合系统运行特性与控制策略研究[D]. 上海: 东华大学, 2015. |
OUYANG Zengkai. Research on performance characteristics and control strategy of wind-storage hybrid system[D]. Shanghai: Donghua University, 2015. | |
[52] |
彭占磊, 杨之乐, 杨文强, 等. 电化学储能参与电力系统规划运行方法综述[J]. 综合智慧能源, 2022, 44(6):37-44.
doi: 10.3969/j.issn.2097-0706.2022.06.004 |
PENG Zhanlei, YANG Zhile, YANG Wenqiang, et al. Review on planning and operation methods for power system with participation of electrochemical energy storage systems[J]. Integrated Intelligent Energy, 2022, 44(6):37-44.
doi: 10.3969/j.issn.2097-0706.2022.06.004 |
|
[53] | 鲍建, 杨沛豪, 何昭辉, 等. 新能源混合储能提高高电压穿越能力研究[J]. 热力发电, 2021, 50(8):79-86. |
BAO Jian, YANG Peihao, HE Zhaohui, et al. Research on improving high voltage ride through capability of new energy hybrid energy storage system[J]. Thermal Power Generation, 2021, 50(8):79-86. | |
[54] | 常晓勇. 功率型储能系统在直流微电网运行控制中的关键技术研究[D]. 天津: 天津大学, 2017. |
CHANG Xiaoyong. Research on key technologies of power-type energy storage systems in DC micro-grid operation and control[D]. Tianjin: Tianjin University, 2017. | |
[55] | NI F, GUO Y, LI C. Superconducting Magnetic energy storage for seamless mode switching in a DC microgrid[C]// 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). Tianjin, China: IEEE, 2020. |
[56] | 夏鹏, 刘文颖, 朱丹丹, 等. 基于模型预测控制的多时间尺度无功电压优化控制方法[J]. 电力自动化设备, 2019, 36(3):64-70. |
XIA Peng, LIU Wenying, ZHU Dandan, et al. Multi-time scale optimal control method of reactive power and voltage based on model predictive control[J]. Electric Power Automation Equipment, 2019, 36(3):64-70. | |
[57] | 张颖, 季宇, 唐云峰. 基于MPC含分布式光伏配电网有功功率-无功功率协调控制[J]. 电力系统自动化, 2017, 41(21):146-152. |
ZHANG Ying, JI Yu, TANG Yunfeng. Coordinated control of active and reactive power for distribution network with distributed photovoltaic based on model predictive control[J]. Automation of Electric Power Systems, 2017, 41(21):146-152. | |
[58] | 任佳依, 顾伟, 王勇, 等. 基于模型预测控制的主动配电网多时间尺度有功无功协调调度[J]. 中国电机工程学报, 2018, 38(5):1397-1407. |
REN Jiayi, GU Wei, WANG Yong, et al. Multi-time scale active and reactive power coordinated optimal dispatch in active distribution network based on model predictive control[J]. Proceedings of the CSEE, 2018, 38(5):1397-1407. |
[1] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[2] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[3] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[4] | 李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34. |
[5] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[6] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[7] | 缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67. |
[8] | 陆文甜. 基于增量交换的主动配电网分布式多目标最优潮流[J]. 综合智慧能源, 2024, 46(2): 43-48. |
[9] | 孙雨乐, 漆淘懿, 赵宇明, 叶承晋, 惠红勋. 路网耦合下计及电动汽车V2G潜力的充电站选址定容研究[J]. 综合智慧能源, 2024, 46(1): 1-10. |
[10] | 田泽禹, 沙钊旸, 赵全斌, 严卉, 种道彤. 针对温控负载变化的虚拟电厂控制策略研究[J]. 综合智慧能源, 2024, 46(1): 28-37. |
[11] | 方刚, 王静, 张波波, 王俊哲. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55. |
[12] | 梁艳, 郭立, 张丹, 刘智琦, 胡郁彬, 周霞, 魏聪, 单宇. 考虑主客观响应能力的电动汽车聚合潜力评估[J]. 综合智慧能源, 2023, 45(9): 1-10. |
[13] | 胡超, 彭文河, 方支剑. 基于光储充电站的电动汽车分层优化调度[J]. 综合智慧能源, 2023, 45(9): 11-17. |
[14] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[15] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||