| [1] |
KAKOULAKI G, KOUGIAS I, TAYLOR N, et al. Green hydrogen in Europe—A regional assessment: Substituting existing production with electrolysis powered by renewables[J]. Energy Conversion and Management, 2021, 228: 113649.
|
| [2] |
GÖTZ M, LEFEBVRE J, MÖRS F, et al. Renewable power-to-gas: A technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390.
|
| [3] |
TENG Y, WANG Z D, LI Y, et al. Multi-energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility[J]. CSEE Journal of Power and Energy Systems, 2019, 5(2): 266-274.
|
| [4] |
CHENG Y, LIU M B, CHEN H L, et al. Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2-based electrothermal energy storage[J]. Energy, 2021, 216: 119269.
|
| [5] |
DING X Y, SUN W, HARRISON G P, et al. Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid[J]. Energy, 2020, 213: 118804.
|
| [6] |
WANG Y L, LIU C, QIN Y M, et al. Synergistic planning of an integrated energy system containing hydrogen storage with the coupled use of electric-thermal energy[J]. International Journal of Hydrogen Energy, 2023, 48(40): 15154-15178.
|
| [7] |
刘敦楠, 徐尔丰, 刘明光, 等. 面向分布式电源就地消纳的园区分时电价定价方法[J]. 电力系统自动化, 2020, 44(20): 19-28.
|
|
LIU Dunnan, XU Erfeng, LIU Mingguang, et al. TOU pricing method for park considering local consumption of distributed generator[J]. Automation of Electric Power Systems, 2020, 44(20): 19-28.
|
| [8] |
张伊宁, 何宇斌, 晏鸣宇, 等. 计及需求响应与动态气潮流的电-气综合能源系统优化调度[J]. 电力系统自动化, 2018, 42(20): 1-8.
|
|
ZHANG Yining, HE Yubin, YAN Mingyu, et al. Optimal dispatch of integrated electricity-natural gas system considering demand response and dynamic natural gas flow[J]. Automation of Electric Power Systems, 2018, 42(20): 1-8.
|
| [9] |
PONOĆKO J, MILANOVIĆ J V. Multi-objective demand side management at distribution network level in support of transmission network operation[J]. IEEE Transactions on Power Systems, 2020, 35(3): 1822-1833.
|
| [10] |
ZHANG Y N, HE Y B, YAN M Y, et al. Linearized stochastic scheduling of interconnected energy hubs considering integrated demand response and wind uncertainty[J]. Energies, 2018, 11(9): 2448.
|
| [11] |
王仕炬, 刘天琪, 何川, 等. 基于舒适度的需求响应与碳交易的园区综合能源经济调度[J]. 电测与仪表, 2022, 59(11):1-7.
|
|
WANG Shiju, LIU Tianqi, HE Chuan, et al. Comfort demand response and carbon trading based comprehensive energy economic dispatching in industrial parks[J]. Electrical Measurement & Instrumentation, 2022, 59(11): 1-7.
|
| [12] |
葛磊蛟, 于惟坤, 朱若源, 等. 考虑改进阶梯式碳交易机制与需求响应的综合能源系统优化调度[J]. 综合智慧能源, 2023, 45(7):97-106.
doi: 10.3969/j.issn.2097-0706.2023.07.011
|
|
GE Leijiao, YU Weikun, ZHU Ruoyuan, et al. Integrated energy system optimization scheduling considering improved stepped carbon trading mechanism and demand responses[J]. Integrated Intelligent Energy, 2023, 45(7): 97-106.
doi: 10.3969/j.issn.2097-0706.2023.07.011
|
| [13] |
TROTTER P, TOTH F. The impact of EU ETS on energy system optimization: Insights from integrated assessment models[J]. Energy Economics, 2015, 52: 103-115.
|
| [14] |
BELLORA C, FONTAGNÉ L. EU in search of a carbon border adjustment mechanism[J]. Energy Economics, 2023, 123: 106673.
|
| [15] |
AMBEC S. The European Union's carbon border adjustment mechanism: Challenges and perspectives[R]. TSE Working Paper,2022: 1-27.
|
| [16] |
崔杨, 曾鹏, 仲悟之, 等. 考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J]. 电力自动化设备, 2021, 41(3): 10-17.
|
|
CUI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J]. Electric Power Automation Equipment, 2021, 41(3): 10-17.
|
| [17] |
GUO R, YE H W, ZHAO Y. Low carbon dispatch of electricity-gas-thermal-storage integrated energy system based on stepped carbon trading[J]. Energy Reports, 2022, 8: 449-455.
|
| [18] |
陈志, 胡志坚, 翁菖宏, 等. 基于阶梯碳交易机制的园区综合能源系统多阶段规划[J]. 电力自动化设备, 2021, 41(9): 148-155.
|
|
CHEN Zhi, HUZhijian, WENG Changhong, et al. Multi-stage planning of park-level integrated energy system based on ladder-type carbon trading mechanism[J]. Electric Power Automation Equipment, 2021, 41(9): 148-155.
|
| [19] |
陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
|
|
CHEN Jinpeng, HU Zhijian, CHEN Yingguang, et al. Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric Power Automation Equipment, 2021, 41(9): 48-55.
|
| [20] |
SUN H B, SUN X M, KOU L, et al. Optimal scheduling of park-level integrated energy system considering ladder-type carbon trading mechanism and flexible load[J]. Energy Reports, 2023, 9:3417-3430.
|
| [21] |
陈浩, 马刚, 钱达, 等. 绿证-碳交易机制下考虑阶梯需求响应的区域综合能源系统优化调度[J/OL]. 综合智慧能源,1-12(2024-11-19)[2024-12-05]. http://kns.cnki.net/kcms/detail/41.1461.tk.20241118.1910.003.html.
|
|
CHEN Hao, MA Gang, QIAN Da, et al. Optimized dispatch of integrated regional energy system considering stepped demand response under green certificate-carbon trading mechanisms[J/OL]. Integrated Intelligent Energy,1-12(2024-11-19)[2024-12-05]. http://kns.cnki.net/kcms/detail/41.1461.tk.20241118.1910.003.html.
|
| [22] |
ULLEBERG Ø. Modeling of advanced alkaline electrolyzers: A system simulation approach[J]. Hydrogen Energy, 2003; 28:21-33.
|
| [23] |
FU C, LIN J, SONG Y H, et al. Optimal operation of an integrated energy system incorporated with HCNG distribution networks[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2141-2151.
|
| [24] |
Ursúa A, Sanchis P. Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyse[J]. International Journal of Hydrogen Energy, 2012, 37(24): 18598-18614.
|
| [25] |
HUANG C J, ZONG Y, YOU S et al. Economic model predictive control for multi-energy system considering hydrogen-thermal-electric dynamics and waste heat recovery of MW-level alkaline electrolyzer[J]. Energy Conversion and Management, 2022, 265: 115697.
|
| [26] |
陈朝旭, 张亚超, 朱蜀, 等. 考虑多电解槽多工况组合运行的电-氢-热综合能源系统优化调度[J/OL]. 电网技术,1-10(2024-01-11)[2024-11-05]. https://doi.org/10.13335/j.1000-3673.pst.2023.2140.
|
|
CHEN Zhaoxu, ZHANG Yachao, ZHU Shu, et al. Optimal scheduling of electricity-hydrogen-heat lntegrated energy system considering combined operation of multi-electrolyzers under multiple conditions[J/OL]. Power Grid Technology,1-10(2024-01-11)[2024-11-05]. https://doi.org/10.13335/j.1000-3673.pst.2023.2140.
|
| [27] |
叶幸, 邱辰, 艾琳, 等. “双碳”目标下可再生能源绿色电力证书与碳交易衔接机制的思考[J/OL]. 综合智慧能源, 1-9(2024-09-05)[2024-11-05].http://kns.cnki.net/kcms/detail/41.1461.TK.20240904.1056.006.html.
|
|
YE Xing, QIU Chen, AI Lin, et al. Connection mechanism between green electricity certificates and carbon tradingmechanism under the "double carbon" target[J/OL]. Integrated Intelligent Energy,1-9(2024-09-05)[2024-11-05].http://kns.cnki.net/kcms/detail/41.1461.TK.20240904.1056.006.html.
|
| [28] |
生态环境部办公厅. 企业温室气体排放核算方法与报告指南:发电设施[R]. 北京: 生态环境部办公厅, 2022.
|
| [29] |
QIU W T, SU W J, ZONG Y. Energy price-driven integrated demand response for optimal operation of multi-carrier energy systems with hydrogen facility[C]// Proceedings of 2023 3rd Power System and Green Energy Conference (PSGEC),IEEE, 2023: 599-603.
|
| [30] |
DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-Ⅱ[M]// Parallel Problem Solving from Nature PPSN VI. Heidelberg: Springer Berlin Heidelberg, 2000: 849-858.
|
| [31] |
张晓捷. 基于熵权TOPSIS法的长租公寓财务风险评价及防范研究:以青客公寓为例[D]. 南宁: 广西大学, 2022.
|
|
ZHANG Xiaojie. Research on financial risk evaluation and preventive measures of long-time rental apartments based on entropy weight TOPSIS method[D]. Nanning: Guangxi University, 2022.
|