综合智慧能源 ›› 2022, Vol. 44 ›› Issue (5): 30-40.doi: 10.3969/j.issn.2097-0706.2022.05.003
出版日期:
2022-05-25
通讯作者:
*屈尹鹏(1991),男,助理研究员,博士,从事风电高效安全运行及新能源发电等方面的研究, quyinpeng@hnu.edu.cn。作者简介:
颜畅(1997),男,在读博士研究生,从事风电场控制研究, yanchang@hnu.edu.cn基金资助:
Chang YAN(), Sheng HUANG(
), Yinpeng QU(
)
Published:
2022-05-25
摘要:
我国经济已由高速增长转向高质量发展阶段,建设以可再生能源为主体的绿色、低碳、清洁能源体系是我国能源发展的重要战略方向。利用海上风电产生的绿色电力制氢不仅为海上风电消纳提供了一种新思路,也是未来新能源替代传统能源,推动“双碳”目标实现的重要手段之一。目前,海上风电制氢系统的氢能储存以及上网成本仍然较高,在并网或离网的情况下,如何实现系统最优设备配置与控制是亟须解决的问题。归纳了目前国内外在海上风力发电、制氢储氢和海上风电制氢系统等方面的研究进展,并对未来的研究方向进行了展望。
中图分类号:
颜畅, 黄晟, 屈尹鹏. 面向碳中和的海上风电制氢技术研究综述[J]. 综合智慧能源, 2022, 44(5): 30-40.
Chang YAN, Sheng HUANG, Yinpeng QU. Review on hydrogen production technology from offshore wind power to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(5): 30-40.
表 1
常见海上风电基础结构特点
基础形式 | 特征 | 优点 | 缺点 | 适合环境与水深 |
---|---|---|---|---|
重力式 | 组合式钢筋混凝土外壳,同时需要较重的压舱材料。依靠自重维持结构稳定并克服风机载荷 | 设计简单、造价低廉、安装简便,受海床沙砾影响不大,抗风暴和风浪袭击性能好 | 海水深度的影响很大,随着水深的增加,其重量和造价将成倍增加且需要平整海床 | 水深不超过20 m的非淤泥质的海床 |
单桩式 | 桩身由钢管焊接组成,桩的直径根据海水水深及风电机组的装机容量而定,在4~7 m,钢管壁厚50~70 mm | 结构简单、受力明确、施工工期短、经济性较好 | 坚硬海床环境下施工成本高 | 水深不超过30 m且具有较好持力层的海域 |
三脚架式 | 定位于海底3根钢管桩的桩顶由桩管套连接上部三脚架结构,构成组合式多桩基础 | 刚度、强度较高,适用于各种海床条件 | 水深和风电机组单机容量增大,基础结构制作和运输的难度提升很大,可能会超出成本的限制 | 适用水深30~40 m海域 |
导管架式 | 钢质空间框架式结构 | 杆径小、强度高、质量轻,受波浪流作用小,对不同地质环境适应性强 | 随着水深的增长,基础的造价会随之大幅增长 | 水深5~50 m海域 |
多桩式 | 由桩基和承台2部分组成,桩基均匀布置在承台底,与承台固端连接,形成承台、桩、土共同受力体系 | 构刚度较大、稳定性好,基础运输、桩基施工、混凝土浇筑等均为常规结构 | 工程量大、工序较多、工期长 | 水深5~20 m海域 |
负压筒式 | 钢桶沉箱结构 | 钢材用量少,施工方便、不受天气制约、易于拆卸 | 沉放、调平难度较大,且永久运行时尚需解决不均匀沉降、基础周围局部冲刷等方面的技术问题 | 水深小于60 m且砂性土或软黏土的海域 |
张力腿式 | 由中心柱、延展臂、张力腿系泊系统以及海底固定系统这四个部分组成 | 稳定性良好,同时建造成本相对较低 | 张力系泊系统复杂、安装费用高,张力筋腱张力受海流影响大,上部结构和系泊系统的频率耦合易发生共振运动 | 水深大于60 m海域 |
立柱式 | 大直径、大吃水的浮式柱状结构 | 纵向波浪激励力小、垂荡运动小 | 横摇和纵摇值较大 | 水深大于100 m海域 |
半潜式 | 由立柱、横梁、斜撑、压水板、系泊线和锚固基础组成 | 吃水能力灵活,水线面积大,在运输和安装时具有良好的稳性 | 结构较为复杂、在波浪中可能经历大型升沉运动 | 水深大于50 m海域 |
驳船式 | 由浮体平台、系泊线、锚固基础组成 | 结构最为简单且生产工艺成熟,经济性较好 | 结构稳定性不如其他3类漂浮式基础 | 水深大于30 m海域 |
表 2
国内外供应商主要海上风机型号
企业 | 型号 | 容量/MW | 驱动形式 | 风轮直 径/m |
---|---|---|---|---|
明阳智慧能源 | MySE 16.0-242 | 16 | 半直驱永磁 | 242 |
MHI Vestas | V236-15.0 MW | 15 | 半直驱永磁 | 236 |
西门子歌美飒 | 14 MW-222DD | 14 | 直驱永磁 | 222 |
通用电气 | Haliade X 14 MW-220 | 14 | 直驱永磁 | 220 |
东方电气 | 暂未公布 | 13 | 直驱永磁 | 211 |
通用电气 | Haliade-X 12 MW | 12 | 直驱永磁 | 220 |
西门子歌美飒 | SG 11.0-193DD Flex | 11 | 直驱永磁 | 200 |
东方电气 | D10000-185 | 10 | 直驱永磁 | 185 |
明阳智慧能源 | SE8.0-10-180 | 8~10 | 半直驱永磁 | 180 |
MHI Vestas | V164-9.5 MW | 9.5 | 半直驱永磁 | 164 |
MHI Vestas | V174-9.5 MW | 9.5 | 半直驱永磁 | 174 |
西门子歌美飒 | SG8.0-167DD | 8~9 | 直驱永磁 | 167 |
金风科技 | GW175-8.0 MW | 8 | 直驱永磁 | 175 |
上海电气 | 8.0-167 | 8 | 直驱永磁 | 167 |
明阳智慧能源 | SE7.25-158 | 7.25 | 直驱永磁 | 158 |
远景集团 | EN-161/5.2 | 5.20 | 高速齿轮箱传动 | 161 |
中船重工海装风电 | H171-5 MW | 5 | 高速齿轮箱传动 | 171 |
[1] | 赵国涛, 钱国明, 王盛. “双碳”目标下绿色电力低碳发展的路径分析[J]. 华电技术, 2021, 43(6):11-20. |
ZHAO Guotao, QIAN Guoming, WANG Sheng. Analysis on green and low-carbon development path for power industry to realize carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(6):11-20. | |
[2] | Global wind report 2022[R]. Global Wind Energy Council: Brussels, Belgium, 2022. |
[3] | 国家能源局. 国家能源局2022年一季度网上新闻发布会文字实录[EB/OL].(2022-01-28)[2022-04-21]http://www.nea.gov.cn/2022-01/28/c_1310445390.htm. |
[4] | 华经情报网. 2021年中国海上风电行业发展现状分析,双碳循环下行业飞速发展[EB/OL].(2021-03-16)[2022-04-21]http://www.huaon.com/channel/trend/784476.html. |
[5] |
ZHANG X. The development trend of and suggestions for china’s hydrogen energy industry[J]. Engineering, 2021, 7(6):719-721.
doi: 10.1016/j.eng.2021.04.012 |
[6] | Commission European. A hydrogen strategy for a climate-neutral europe[EB/OL].(2020-07-08)[2022-04-21]https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf. |
[7] | DECOURT B, LAJOIE B, DEBARRE R, et al. Leading the energy transition[Z]. SBC Energy Institute, 2014. |
[8] |
KALDELLIS J K, APOSTOLOU D, KAPSALI M, et al. Environmental and social footprint of offshore wind energy:Comparison with onshore counterpart[J]. Renewable Energy, 2016, 92:543-556.
doi: 10.1016/j.renene.2016.02.018 |
[9] | 关新, 赵建, 牛阔, 等. 海上风力机固定单桩基础支撑工况冲击响应研究[J]. 沈阳工程学院学报(自然科学版), 2021, 17(4):1-5. |
GUAN Xin, ZHAO Jian, NIU Kuo, et al. Study on impact response for single pile foundation supported of offshore wind turbine[J]. Journal of Shenyang Institute of Engineering(Natural Science), 2021, 17(4):1-5. | |
[10] |
ESTEBAN M D, LÓPEZ-GUTIÉRREZ J S, NEGRO V. Gravity-based foundations in the offshore wind sector[J]. Journal of Marine Science and Engineering, 2019, 7(3):64.
doi: 10.3390/jmse7030064 |
[11] | 田会元, 许洪露. 基于ANSYS的海上风机重力式基础载荷施加形式研究[J]. 水电与新能源, 2019, 33(3):69-72. |
TIAN Huiyuan, XU Honglu. Loading form analysis of gravity-type foundation of offshore wind turbines based on ansys software[J]. Hydropower and New Energy, 2019, 33(3):69-72. | |
[12] | 任彦忠, 李光明, 梁峰, 等. 复杂条件下近海风电机组单桩基础设计及优化[J]. 风能, 2020(1):88-95. |
[13] | 陈修凯. 海上风力发电及其关键技术分析[J]. 通信电源技术, 2018, 35(12):48-49. |
CHEN Xiukai. Offshore wind power generation and its key technology analysis[J]. Telecom Power Technology, 2018, 35(12):48-49. | |
[14] | 袁汝华, 黄海龙, 孙道青, 等. 海上风电风机基础结构形式及安装技术研究[J]. 能源与节能, 2018(12):59-61. |
YUAN Ruhua, HUANG Hailong, SUN Daoqing, et al. Research on basic structure and installation technology of offshore wind turbine[J]. Energy and Energy Conservation, 2018(12):59-61. | |
[15] | 李炜, 张敏, 刘振亚, 等. 三脚架式海上风电基础结构基频敏感性研究[J]. 太阳能学报, 2015, 36(1):90-95. |
LI Wei, ZHANG Min, LIU Zhenya, et al. Fundamental structural frequency analysis for tripod-type offshore wind turbine[J]. Acta Energiae Solaris Sinicaacta Energiae Solaris Sinica, 2015, 36(1):90-95. | |
[16] | 王安安. 新型张力腿式双模块海上风力机动力响应研究[D]. 大连: 大连理工大学, 2021. |
[17] |
SHI W, JIANG J, SUN K, et al. Aerodynamic performance of semi-submersible floating wind turbine under pitch motion[J]. Sustainable Energy Technologies and Assessments, 2021, 48:101556.
doi: 10.1016/j.seta.2021.101556 |
[18] | RAJESWARI K, NALLAYARASU S. Experimental and numerical investigation on the suitability of semi-submersible floaters to support vertical axis wind turbine[J]. Ships and Offshore Structures, 2021:1-12. |
[19] | 王静爱, 左伟. 中国地理图集[M]. 北京: 中国地图出版社, 2010. |
[20] | 黄子果. 海上风电机组机型发展的技术路线对比[J]. 中外能源, 2019, 24(8):29-35. |
[21] | SETHURAMAN L, VIJAYAKUMAR G, ANANTHAN S, et al. Made 3D:Enabling the next generation of high-torque density wind generators by additive design and 3D printing[J]. Forschungim Ingenieurwesen, 2021, 85(2):287-311. |
[22] | SETHURAMAN L, VIJAYAKUMAR G. A new shape optimization approach for lightweighting electric machines inspired by additive manufacturing[R]. National Renewable Energy Laboratory,Golden,COlorado(United States), 2022. |
[23] | ZHU G, LI L, LIU X, et al. Design optimization of a HTS-modulated PM wind generator[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8):1-4. |
[24] | KIM C, SUNG H J, GO B S, et al. Design,fabrication, and testing of a full-scale HTS coil for a 10 MW HTS wind power generator[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5):1-5. |
[25] | KIM C, SUNG H J, GO B S, et al. Design and property analysis of a performance evaluation system for HTS wind power generators[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4):1-5. |
[26] |
ZHU X, CHENG M. Design and analysis of 10 MW class HTS exciting double stator direct-drive wind generator with stationary seal[J]. IEEE Access, 2019, 7:51129-51139.
doi: 10.1109/ACCESS.2019.2911298 |
[27] |
CAPURSO T, STEFANIZZI M, TORRESI M, et al. Perspective of the role of hydrogen in the 21st century energy transition[J]. Energy Conversion and Management, 2022, 251:114898.
doi: 10.1016/j.enconman.2021.114898 |
[28] | DHABI A. Global Renwable Outlook:Energy transformation 2050[R]. Univ Bonn Germany: International Renewable Energy Agency, 2020. |
[29] | International Renewable Energy Agency. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5 ℃ Climate Goal[R]. 2020. |
[30] |
LUO M, YI Y, WANG S, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3186-3214.
doi: 10.1016/j.rser.2017.07.007 |
[31] | TAIBI E, MIRANDA R, VANHOUDT W, et al. Hydrogen from renewable power:Technology outlook for the energy transition[R]. 2018. |
[32] |
BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids:A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82:2440-2454.
doi: 10.1016/j.rser.2017.09.003 |
[33] |
KUMAR S S, HIMABINDU V. Hydrogen production by PEM water electrolysis--A review[J]. Materials Science for Energy Technologies, 2019, 2(3):442-454.
doi: 10.1016/j.mset.2019.03.002 |
[34] |
POIMENIDIS I A, TSANAKAS M D, PAPAKOSTA N, et al. Enhanced hydrogen production through alkaline electrolysis using laser-nanostructured nickel electrodes[J]. International Journal of Hydrogen Energy, 2021, 46(75):37162-37173.
doi: 10.1016/j.ijhydene.2021.09.010 |
[35] |
AMORES E, SÁNCHEZ M M, SÁNCHEZ M. Effects of the marine atmosphere on the components of an alkaline water electrolysis cell for hydrogen production[J]. Results in Engineering, 2021, 10:100235.
doi: 10.1016/j.rineng.2021.100235 |
[36] |
BARCO-BURGOS J, EICKER U, SALDAÑA-ROBLES N, et al. Thermal characterization of an alkaline electrolysis cell for hydrogen production at atmospheric pressure[J]. Fuel, 2020, 276:117910.
doi: 10.1016/j.fuel.2020.117910 |
[37] | GUO Y, LI G, ZHOU J, et al. Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis[C]// IOP Conference Series: Earth and Environmental Science.IOP Publishing, 2019, 371(4):42022. |
[38] |
WIRKERT F J, ROTH J, JAGALSKI S, et al. A modular design approach for PEM electrolyser systems with homogeneous operation conditions and highly efficient heat management[J]. International Journal of Hydrogen Energy, 2020, 45(2):1226-1235.
doi: 10.1016/j.ijhydene.2019.03.185 |
[39] | MARIC R, YU H. Proton exchange membrane water electrolysis as a promising technology for hydrogen production and energy storage[J]. Nanostructures in Energy Generation,Transmission and Storage, 2019:13. |
[40] |
VILLAGRA A, MILLET P. An analysis of PEM water electrolysis cells operating at elevated current densities[J]. International Journal of Hydrogen Energy, 2019, 44(20): 9708-9717.
doi: 10.1016/j.ijhydene.2018.11.179 |
[41] |
FRENSCH S H, FOUDA O F, SERRE G, et al. Influence of the operation mode on PEM water electrolysis degradation[J]. International Journal of Hydrogen Energy, 2019, 44(57):29889-29898.
doi: 10.1016/j.ijhydene.2019.09.169 |
[42] |
ZHANG F, ZHAO P, NIU M, et al. The survey of key technologies in hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2016, 41(33):14535-14552.
doi: 10.1016/j.ijhydene.2016.05.293 |
[43] |
ABE J, POPOOLA, AJENIFUJA E, et al. Hydrogen energy, economy and storage:Review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29):15072-15086.
doi: 10.1016/j.ijhydene.2019.04.068 |
[44] | 李建, 张立新, 李瑞懿, 等. 高压储氢容器研究进展[J]. 储能科学与技术, 2021, 10(5):1835-1844. |
LI Jian, ZHANG Lixin, LI Ruiyi, et al. High-pressure gaseous hydrogen storage vessels:Current status and prospects[J]. Energy Storage Science and Technology, 2021, 10(5):1835-1844. | |
[45] | PANFILOV M. Underground and pipeline hydrogen storage[M]// Compendium of hydrogen energy. Woodhead Publishing, 2016:91-115. |
[46] |
ANDERSSON J, GRÖNKVIST S. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(23):11901-11919.
doi: 10.1016/j.ijhydene.2019.03.063 |
[47] | MENG N. An overview of hydrogen storage technologies[J]. Energy Exploration & Exploitation, 2009, 24(3):197-209. |
[48] | GILLETTE J L, KOLPA R L. Overview of interstate hydrogen pipeline systems[R]. Argonne National Lab.(ANL),Argonne,IL(United States), 2008. |
[49] |
BALL M, WEEDA M. The hydrogen economy-vision or reality?[J]. International Journal of Hydrogen Energy, 2015, 40(25):7903-7919.
doi: 10.1016/j.ijhydene.2015.04.032 |
[50] |
FEKETE J R, SOWARDS J W, AMARO R L. Economic impact of applying high strength steels in hydrogen gas pipelines[J]. International Journal of Hydrogen Energy, 2015, 40(33):10547-10558.
doi: 10.1016/j.ijhydene.2015.06.090 |
[51] |
ZHANG F, ZHAO P, NIU M, et al. The survey of key technologies in hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2016, 41(33):14535-14552.
doi: 10.1016/j.ijhydene.2016.05.293 |
[52] |
IORDACHE I, SCHITEA D, GHEORGHE A V, et al. Hydrogen underground storage in Romania,potential directions of development,stakeholders and general aspects[J]. International Journal of Hydrogen Energy, 2014, 39(21):11071-11081.
doi: 10.1016/j.ijhydene.2014.05.067 |
[53] |
PRABHUKHOT P R, WAGH M M, GANGAL A C. A review on solid state hydrogen storage material[J]. Adv Energy Power, 2016, 4(2):11-22.
doi: 10.13189/aep.2016.040202 |
[54] | ZHANG Y H, JIA Z C, YUAN Z M, et al. Development and application of hydrogen storage[J]. Journal of Iron and Steel Research(International), 2015, 22(9):757-770. |
[55] |
EDALATI K, UEHIRO R, IKEDA Y, et al. Design and synthesis of a magnesium alloy for room temperature hydrogen storage[J]. Acta Materialia, 2018, 149:88-96.
doi: 10.1016/j.actamat.2018.02.033 |
[56] |
TARHAN C, CIL M A. A study on hydrogen,the clean energy of the future:Hydrogen storage methods[J]. Journal of Energy Storage, 2021, 40:102676.
doi: 10.1016/j.est.2021.102676 |
[57] | 温源. 风电制氢能量管理系统控制方法研究[D]. 北京: 华北电力大学, 2019. |
[58] | 曹蕃, 郭婷婷, 陈坤洋, 等. 风电耦合制氢技术进展与发展前景[J]. 中国电机工程学报, 2021, 41(6):2187-2201. |
CAO Fan, GUO Tingting, CHEN Kunyang, et al. Progress and development prospect of coupled wind and hydrogen systems[J]. Proceedings of the CSEE, 2021, 41(6):2187-2201. | |
[59] |
LEAHY P, MCKEOGH E, MURPHY J, et al. Development of a viability assessment model for hydrogen production from dedicated offshore wind farms[J]. International Journal of Hydrogen Energy, 2021, 46(48):24620-24631.
doi: 10.1016/j.ijhydene.2020.04.232 |
[60] | MEIER K. Hydrogen production with sea water electrolysis using Norwegian offshore wind energy potentials[J]. International Journal of Energy & Environmental Engineering, 2014, 5(2):1-12. |
[61] |
BABARIT A, GILLOTEAUX J C, CLODIC G, et al. Techno-economic feasibility of fleets of far offshore hydrogen producing wind energy converters[J]. International Journal of Hydrogen Energy, 2018, 43(15):7266-7289.
doi: 10.1016/j.ijhydene.2018.02.144 |
[62] | CHEN J, PAN G, ZHU Y, et al. Benefits of using electrolytic hydrogen for offshore wind on china’s low-carbon energy[C]// 2021 IEEE Sustainable Power and Energy Conference (iSPEC).IEEE, 2021:2184-2189. |
[63] | 鲁军辉, 王随林, 唐进京, 等. 可再生能源与余热协同辅助碳捕集技术研究现状与展望[J]. 华电技术, 2021, 43(11):97-109. |
LU Junhui, WANG Suilin, TANG Jinjing, et al. Review and prospects of carbon capture technology assisted by renewable energy,waste heat and combination of them[J]. Huadian Technology, 2021, 43(11):97-109. | |
[64] | 李扬, 王赫阳, 王永真, 等. 碳中和背景、路径及源于自然的碳中和热能解决方案[J]. 华电技术, 2021, 43(11):5-14. |
LI Yang, WANG Heyang, WANG Yongzhen, et al. Background and routs of carbon neutrality and its nature derived thermal solutions[J]. Huadian Technology, 2021, 43(11):5-14. | |
[65] | 张俊锋, 许文娟, 王跃锜, 等. 面向碳中和的中国碳排放现状调查与分析[J]. 华电技术, 2021, 43(10):1-10. |
ZHANG Junfeng, XU Wenjuan, WANG Yueqi, et al. Investigation and analysis on carbon emission status in China on the path to carbon neutrality[J]. Huadian Technology, 2021, 43(10):1-10. | |
[66] |
BONACINA C N, GASKARE N B, VALENTI G. Assessment of offshore liquid hydrogen production from wind power for ship refueling[J]. International Journal of Hydrogen Energy, 2022, 47(2):1279-1291.
doi: 10.1016/j.ijhydene.2021.10.043 |
[67] |
JANG D, KIM K, KIM K H, et al. Techno-economic analysis and monte carlo simulation for green hydrogen production using offshore wind power plant[J]. Energy Conversion and Management, 2022, 263:115695.
doi: 10.1016/j.enconman.2022.115695 |
[68] | 田甜, 李怡雪, 黄磊, 等. 海上风电制氢技术经济性对比分析[J]. 电力建设, 2021, 42(12):136-144. |
TIAN Tian, LI Yixue, HUANG Lei, et al. Comparative analysis on the economy of hydrogen production technology for offshore wind power consumption[J]. Electric Power Construction, 2021, 42(12):136-144. | |
[69] |
CALADO G, CASTRO R. Hydrogen production from offshore wind parks:Current situation and future perspectives[J]. Applied Sciences, 2021, 11(12):5561.
doi: 10.3390/app11125561 |
[70] | VARONE A, FERRARI M. Power to liquid and power to gas:An option for the German Energiewende[J]. Renewable & Sustainable Energy Reviews, 2015, 45:207-218. |
[71] |
CRIVELLARI A, COZZANI V. Offshore renewable energy exploitation strategies in remote areas by power-to-gas and power-to-liquid conversion[J]. International Journal of Hydrogen Energy, 2020, 45(4):2936-2953.
doi: 10.1016/j.ijhydene.2019.11.215 |
[72] |
MELO D, CHANG-CHIEN L. Synergistic control between hydrogen storage system and offshore wind farm for grid operation[J]. IEEE Transactions on Sustainable Energy, 2013, 5(1):18-27.
doi: 10.1109/TSTE.2013.2272332 |
[73] |
SERNA A, YAHYAOUI I, NORMEY-RICO J E, et al. Predictive control for hydrogen production by electrolysis in an offshore platform using renewable energies[J]. International Journal of Hydrogen Energy, 2017, 42(17):12865-12876.
doi: 10.1016/j.ijhydene.2016.11.077 |
[74] |
KOIWA K, CUI L, ZANMA T, et al. A coordinated control method for integrated system of wind farm and hydrogen production:Kinetic energy and virtual discharge controls[J]. IEEE Access, 2022, 10:28283-28294.
doi: 10.1109/ACCESS.2022.3158567 |
[75] |
IBRAHIM O S, SINGLITICO A, PROSKOVICS R, et al. Dedicated large-scale floating offshore wind to hydrogen:Assessing design variables in proposed typologies[J]. Renewable and Sustainable Energy Reviews, 2022, 160:112310.
doi: 10.1016/j.rser.2022.112310 |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[3] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[4] | 窦真兰, 李佳文, 张春雁, 蔡祯祺, 袁本峰, 郏琨琪, 肖国萍, 王建强. 固体氧化物电解池时空分布式参数建模[J]. 综合智慧能源, 2024, 46(7): 53-62. |
[5] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[6] | 张勋祥, 吴杰康, 孙烨桦, 彭其坚. 平抑海上风电波动的混合储能系统容量优化配置[J]. 综合智慧能源, 2024, 46(6): 54-65. |
[7] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[8] | 缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67. |
[9] | 陆文甜. 基于增量交换的主动配电网分布式多目标最优潮流[J]. 综合智慧能源, 2024, 46(2): 43-48. |
[10] | 方刚, 王静, 张波波, 王俊哲. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55. |
[11] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[12] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[13] | 刘天阳, 高亚静, 谢典, 赵良. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52. |
[14] | 滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63. |
[15] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||