综合智慧能源

• •    

基于模态二次分解和OOA-CNN-BiLSTM-Attention 的光伏发电功率组合预测

李祯, 杨国华, 张元曦, 马鑫, 杨娜, 刘浩睿   

  1. 宁夏大学电子与电气工程学院, 宁夏回族自治区 750021 中国
  • 收稿日期:2025-03-03 修回日期:2025-04-14
  • 基金资助:
    宁夏自治区自然基金(2023AAC03853)

Combination Forecasting of Photovoltaic Power Generation Based on Modal Secondary Decomposition and OOA-CNN-BiLSTM-Attention

  1. , 750021, China
  • Received:2025-03-03 Revised:2025-04-14
  • Supported by:
    Ningxia Autonomous Region Natural Science Foundation(2023AAC03853)

摘要: 由于太阳辐射的间歇性和不稳定性,光伏发电功率具有较高的随机性和波动性,给电网的稳定运行带来了挑战。为提高预测精度,提出了一种基于模态二次分解和OOA-CNN-BiLSTM-Attention的组合预测模型。首先采用带自适应噪声的完全集合经验模态分解对光伏发电功率数据进行分解,得到不同频率的本征模态分量,其次基于样本熵对这些分量进行K-means聚类,划分为高频、中频和低频分量,然后进一步对高频分量采用变分模态分解进行细化分解。最后,结合了卷积神经网络、双向长短期记忆网络和注意力机制构建了复合深度学习预测模型,并利用鱼鹰优化算法对超参数进行优化。实验结果表明,所提模型的均方根误差达到4.11,平均绝对误差为2.88,平均绝对百分比误差为3.08%,决定系数为98.89%,优于其他模型,表明该方法能够有效捕捉光伏发电功率的多尺度特征,具有较强的泛化能力和应用潜力。

关键词: 光伏功率预测, 模态分解, 卷积神经网络, BiLSTM神经网络, 注意力机制

Abstract: Due to the intermittency and instability of solar radiation, photovoltaic power generation exhibits high randomness and volatility, posing challenges to the stable operation of the power grid. To improve prediction accuracy, a combined forecasting model based on dual-mode decomposition and OOA-CNN-BiLSTM-Attention is proposed. First, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise is used to decompose PV power data, obtaining intrinsic mode functions at different frequencies. Next, based on sample entropy, these functions are clustered into high, medium, and low-frequency components using K-means clustering, and the high-frequency component is further refined with Variational Mode Decomposition. Finally, a composite deep learning prediction model is constructed by integrating Convolutional Neural Network, Bidirectional Long Short-Term Memory network, and Attention mechanism, with hyperparameters optimized using the Owl Optimizer Algorithm. Experimental results show that the proposed model achieves a Root Mean Square Error of 4.11, Mean Absolute Error of 2.88, Mean Absolute Percentage Error of 3.08%, and a Coefficient of Determination of 98.89%, outperforming other models. These results indicate that the method effectively captures the multi-scale features of PV power generation, demonstrating strong generalization ability and application potential.

Key words: PV power forecasting, mode decomposition, convolutional neural network, BiLSTM neural network, attention mechanism