Huadian Technology ›› 2021, Vol. 43 ›› Issue (9): 23-30.doi: 10.3969/j.issn.1674-1951.2021.09.003
• Grid-Connected Control of New Energy • Previous Articles Next Articles
SU Xiaoling1a(), YANG Jun2(
), GAN Jiatian2(
), LI Zhengxi2(
), SI Yang1b(
), GAO Mengyu1b(
)
Received:
2021-05-30
Revised:
2021-06-30
Published:
2021-09-25
CLC Number:
SU Xiaoling, YANG Jun, GAN Jiatian, LI Zhengxi, SI Yang, GAO Mengyu. Engineering test system for the performance of a new type photovoltaic inverter involved in power grid[J]. Huadian Technology, 2021, 43(9): 23-30.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.09.003
Tab.1
SiC based PV inverter parameters
参数 | 逆变器容量/kW | ||
---|---|---|---|
15 | 30 | 50 | |
直流侧最大电压/V | 1 000 | 1 000 | 850 |
MPPT电压范围/V | 380~800 | 500~850 | 450~800 |
直流侧最大电流/A | 20 | 22/30/30 | 120 |
额定输出功率/kW | 15 | 30 | 50 |
额定输出电压/V | 230/380 | 230/380 | 230/380 |
交流侧最大电流/A | 22 | 52 | 90 |
工作频率/Hz | 50 | 50 | 50 |
功率因数范围 | -0.8~0.8 | -0.8~0.8 | -0.8~0.8 |
工作温度范围/°C | -25~60 | -20~50 | -20~50 |
Tab.5
Power quality test results after the PV inverters' power grid connection
测试指标 | 逆变器容量/kW | |||
---|---|---|---|---|
50 | 30 | 15 | ||
电压偏差/% | A相 | 1.82 | 0.91 | 0.45 |
B相 | 0.91 | 1.36 | 0.45 | |
C相 | 2.73 | 2.27 | 0.68 | |
电压谐波含量与畸变率/% | 0.91 | 0.91 | 0.92 | |
三相电压不平衡度/% | 0.25 | 0.89 | 0.28 | |
直流电流分量/mA | A相 | 432 | 246 | 311 |
B相 | 327 | 258 | 258 | |
C相 | 406 | 212 | 297 | |
电压波动与闪变/V | A相 | 0.212 | 0.212 | 0.191 |
B相 | 0.212 | 0.202 | 0.193 | |
C相 | 0.202 | 0.212 | 0.186 | |
功率因数 | 0.99 | 0.99 | 0.99 |
[1] | 陈国平, 李明节, 许涛, 等. 关于新能源发展的技术瓶颈研究[J]. 中国电机工程学报, 2017, 37(1):20-26. |
CHEN Guoping, LI Mingjie, XU Tao, et al. Study on technical bottleneck of new energy development[J]. Proceedings of the CSEE, 2017, 37(1):20-26. | |
[2] | 马进, 赵大伟, 钱敏慧, 等. 大规模新能源接入弱同步支撑直流送端电网的运行控制技术综述[J]. 电网技术, 2017, 41(10):3112-3120. |
MA Jin, ZHAO Dawei, QIAN Minhui, et al. Reviews of control technologies of large-scale renewable energy connected to weakly-synchronized sending-end DC power grid[J]. Power System Technology, 2017, 41(10):3112-3120. | |
[3] |
YAO M Q, CAI X. An overview of the photovoltaic industry status and perspective in China[J]. IEEE Access, 2019, 7:181051-181060.
doi: 10.1109/Access.6287639 |
[4] | SU X L, ZHAO Z K, SI Y, et al. Adaptive robust SMC-based AGC auxiliary service control for ESS-integrated PV/wind station[J]. Complexity, 2020(2):1-10. |
[5] | 孙骁强, 刘鑫, 程林, 等. 基于多调频资源协调控制的西北送端大电网新能源快速频率响应参数设置方案[J]. 电网技术, 2019, 43(5):1760-1765. |
SUN Xiaoqiang, LIU Xin, CHENG Lin, et al. Parameter setting of rapid frequency response of renewable energy sources in northwest power grid based on coordinated control of multi-frequency regulation resources[J]. Power System Technology, 2019, 43(5):1760-1765. | |
[6] | 马晓伟, 徐海超, 刘鑫, 等. 适用于西北送端大电网新能源场站快速频率响应功能的入网试验方法[J]. 电网技术, 2020, 44(4):1384-1391. |
MA Xiaowei, XU Haichao, LIU Xin, et al. A test method for fast frequency response function of renewable energy stations in northwest power grid[J]. Power System Technology, 2020, 44(4):1384-1391. | |
[7] |
KARKI S, ZIAR H, KOREVAAR M, et al. Performance evaluation of silicon-based irradiance sensors versus thermopile pyranometer[J]. IEEE Journal of Photovoltaics, 2021, 11(1):144-149.
doi: 10.1109/JPHOTOV.5503869 |
[8] | FGW. Technical guidelines for power generationg units:Part 3 determination of electrical characteristics of power generating units connected to medium voltage,high voltage,high voltage and extra high voltage grids[S]. Germany, 2010:1-56. |
[9] | FGW. Technical guidelines for power generationg units:Part 4 demands on modeling and validating simulation models of the electrical characteristics[S]. Germany, 2010:1-66. |
[10] | 光伏发电系统模型及参数测试规程:GB/T 32892—2016[S]. 北京: 中国标准出版社, 2016. |
[11] | IEC. Utility-interconnected photovoltaic inverters-test procedure of islanding prevention measures:IEC 62116—2008[S]. Switzerland, 2008. |
[12] | IEEE. IEEE standard conformance test procedures for equipment interconnecting distributed energy resources with electric power systems and associated interfaces:IEEE 1547.1—2020[S]. USA, 2020:1-282. |
[13] | UL. Inverters,converters,controllers and interconnection system equipment for use with distributed energy resources:UL 1741—2001[S]. USA, 2001:1-174. |
[14] | VDE. Automatic disconnection device between a generator and the public low-voltage grid:VDE0126-1-1[S]. Germany, 2006:1-15. |
[15] | CENELEC. Overall efficiency of grid connected photovoltaic inverters:BS EN 50530—2010[S]. Belgium, 2010:1-40. |
[16] | 钱照明, 张军明, 盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学, 2014, 34(29):5149-5161. |
QIAN Zhaoming, ZHANG Junming, SHENG Kuang. Status and development of power semiconductor devices and its applications[J]. Proceedings of the CSEE, 2014, 34(29):5149-5161. | |
[17] | 陈清, 郭培育, 周晴, 等. 集中式光伏发电站设备选型要点[J]. 华电技术, 2020, 42(12):78-81. |
CHEN Qing, GUO Peiyu, ZHOU Qing, et al. Key points to equipment selection for a centralized photovoltaic power station[J]. Huadian Technology, 2020, 42(12):78-81. | |
[18] | 李艳红, 王兴兴. 光储充综合能源系统设计及优化[J]. 华电技术, 2019, 41(11):76-79. |
LI Yanhong, WANG Xingxing. Design and optimization of solar energy storage and charging in integrated energy systems[J]. Huadian Technology, 2019, 41(11):76-79. | |
[19] |
ANTHON A, ZHANG Z, ANDERSEN M A E, et al. The benefits of SiC mosfets in a T-Type inverter for grid-tie applications[J]. IEEE Transactions on Power Electronics, 2017, 32(4):2808-2821.
doi: 10.1109/TPEL.2016.2582344 |
[20] |
AHMED M H, WANG M, HASSAN M A S, et al. Power loss model and efficiency analysis of three-phase inverter based on SiC MOSFETs for PV applications[J]. IEEE Access, 2019, 7:75768-75781.
doi: 10.1109/Access.6287639 |
[21] |
SHI Y J, WANG L, XIE R, et al. A 60 kW 3 kW/kg five-level T-Type SiC PV inverter with 99.2% peak efficiency[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11):9144-9154.
doi: 10.1109/TIE.2017.2701762 |
[22] |
SHI Y J, WANG L, LI H, et al. Stability analysis and grid disturbance rejection for a 60 kW SiC based filter-less grid-connected PV inverter[J]. IEEE Transactions on Industry Applications, 2018, 54(5):5025-5038.
doi: 10.1109/TIA.28 |
[23] |
STEVANOVIC B, SERRANO D, VASIC M, et al. Highly efficient,full ZVS,hybrid,multilevel DC/DC topology for two-stage grid-connected 1 500 V PV system with employed 900 V SiC devices[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(2):811-832.
doi: 10.1109/JESTPE.6245517 |
[24] |
KHODABANDEH M, AFSHARI E, AMIRABADI M. A single-stage soft-switching high-frequency AC-link PV inverter:Design,analysis,and evaluation of Si-based and SiC-based prototypes[J]. IEEE Transactions on Power Electronics, 2019, 34(3):2312-2326.
doi: 10.1109/TPEL.63 |
[25] |
BURKART R M, KOLAR J W. Comparative life cycle cost analysis of Si and SiC PV converter systems based on advanced multi-objective optimization techniques[J]. IEEE Transactions on Power Electronics, 2017, 32(6):4344-4358.
doi: 10.1109/TPEL.2016.2599818 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[3] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[4] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[5] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[6] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[7] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[8] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[9] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[10] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[11] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[12] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[13] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[14] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[15] | WANG Yunyun, MA Zhicheng, ZHOU Qiang, DONG Haiying. Robust optimal scheduling of multi-energy cooperative game considering fairness [J]. Integrated Intelligent Energy, 2023, 45(2): 10-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||