Huadian Technology ›› 2021, Vol. 43 ›› Issue (9): 69-77.doi: 10.3969/j.issn.1674-1951.2021.09.009
• Coordinated Economic Dispatch • Previous Articles Next Articles
ZHANG Jiarui(), YU Pengjun, XU Zhongyi, XU Jiabao, ZHU Zewei
Received:
2021-04-19
Revised:
2021-08-01
Published:
2021-09-25
CLC Number:
ZHANG Jiarui, YU Pengjun, XU Zhongyi, XU Jiabao, ZHU Zewei. Environmental economic dispatch considering wind power systems based on green certificate-carbon trading mechanism[J]. Huadian Technology, 2021, 43(9): 69-77.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.09.009
Tab.2
Energy consumption characteristic parameters of the units
机组 | PG.min/MW | PG.max/MW | ai/(美元·h-1) | bi/(美元·h-1) | ci/[美元·(MW2·h)-1] | di/(美元·h-1) | ei/(rad·MW-1) | |
---|---|---|---|---|---|---|---|---|
1 | 150 | 455 | 1 000 | 16.19 | 0.004 80 | 400 | 0.023 | 0.98 |
2 | 150 | 455 | 970 | 17.26 | 0.003 10 | 420 | 0.035 | 0.95 |
3 | 20 | 130 | 700 | 16.60 | 0.002 50 | 260 | 0.030 | 0.93 |
4 | 20 | 130 | 680 | 16.50 | 0.002 11 | 250 | 0.048 | 1.13 |
5 | 25 | 162 | 450 | 19.70 | 0.003 98 | 260 | 0.043 | 1.15 |
6 | 20 | 80 | 370 | 22.36 | 0.007 12 | 300 | 0.034 | 0.86 |
7 | 25 | 85 | 480 | 27.74 | 0.007 90 | 220 | 0.075 | 0.68 |
8 | 10 | 55 | 660 | 25.92 | 0.004 13 | 210 | 0.075 | 0.95 |
9 | 10 | 55 | 665 | 27.27 | 0.002 22 | 160 | 0.088 | 1.32 |
10 | 10 | 55 | 670 | 27.79 | 0.001 73 | 150 | 0.079 | 0.59 |
Tab.3
Blowdown characteristic equation parameters of the units
机组 | | | | | | |
---|---|---|---|---|---|---|
1 | 198.33 | 2.06 | 0.000 19 | 130.0 | -2.86 | 0.022 |
2 | 195.34 | 2.09 | 0.000 18 | 132.0 | -2.72 | 0.020 |
3 | 155.15 | 2.14 | 0.000 22 | 137.7 | -2.94 | 0.044 |
4 | 152.26 | 2.25 | 0.000 22 | 130.0 | -2.35 | 0.058 |
5 | 152.26 | 2.11 | 0.000 21 | 125.0 | -2.36 | 0.065 |
6 | 101.43 | 3.45 | 0.000 25 | 110.0 | -2.28 | 0.080 |
7 | 111.87 | 2.62 | 0.000 22 | 135.0 | -2.36 | 0.075 |
8 | 126.62 | 5.18 | 0.000 42 | 157.0 | -1.29 | 0.082 |
9 | 134.15 | 5.38 | 0.000 54 | 160.0 | -1.14 | 0.090 |
10 | 142.26 | 5.40 | 0.000 55 | 137.7 | -2.14 | 0.084 |
Tab.4
Network loss factor matrix B element
机组(i) | Bi1(×10-4) | Bi2(×10-4) | Bi3(×10-4) | Bi4(×10-4) | Bi5(×10-4) | Bi6(×10-4) | Bi7(×10-4) | Bi8(×10-4) | Bi9(×10-4) | Bi10(×10-4) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2.022 | 0.286 | 0.543 | 0.565 | 0.454 | 0.103 | 0.324 | 0.213 | 0.154 | 0.302 |
2 | 0.286 | 0.243 | 0.016 | 0.307 | 0.422 | 0.147 | 0.456 | 0.235 | 0.171 | 0.365 |
3 | 0.534 | 0.016 | 0.185 | 0.831 | 0.023 | 0.27 | 0.336 | 0.214 | 0.158 | 0.412 |
4 | 0.565 | 0.307 | 0.831 | 1.129 | 0.113 | 0.295 | 0.298 | 0.465 | 0.185 | 0.346 |
5 | 0.454 | 0.422 | 0.023 | 0.113 | 0.460 | 0.153 | 0.265 | 0.155 | 0.374 | 0.135 |
6 | 0.103 | 0.147 | 0.270 | 0.295 | 0.153 | 0.898 | 0.323 | 0.255 | 0.196 | 0.462 |
7 | 0.454 | 0.422 | 0.023 | 0.113 | 0.460 | 0.153 | 0.179 | 0.365 | 0.186 | 0.389 |
8 | 0.286 | 0.243 | 0.016 | 0.307 | 0.422 | 0.147 | 0.298 | 0.561 | 0.165 | 0.584 |
9 | 0.542 | 0.136 | 0.266 | 0.354 | 0.155 | 0.398 | 0.175 | 0.123 | 0.245 | 0.338 |
10 | 0.561 | 0.414 | 0.323 | 0.122 | 0.223 | 0.315 | 0.421 | 0.371 | 0.286 | 0.541 |
[1] | 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3):1-15. |
HU Angang. China's goal of achieving carbon peaks by 2030 and the main ways[J]. Journal of Beijing University of Technology (Social Science Edition), 2021, 21(3):1-15. | |
[2] | 王乾坤, 李琼慧, 谢国辉. 美国加州可再生能源配额制及对我国的启示[J]. 中外能源, 2012, 17(9):25-31. |
WANG Qiankun, LI Qionghui, XIE Guohui. Renewable portfolio standard in California and its enlightenment for China[J]. Sino-global Energy, 2012, 17(9):25-31. | |
[3] | 娄素华, 卢斯煜, 吴耀武, 等. 低碳电力系统规划与运行优化研究综述[J]. 电网技术, 2013 (6):1483-1490. |
LOU Suhua, LU Siyu, WU Yaowu, et al. An overview on low-carbon power system planning and operation optimization[J]. Power System Technology, 2013(6):1483-1490. | |
[4] | 高亚静, 李瑞环, 梁海峰, 等. 碳市场环境下计及碳捕集电厂和换电站的电力系统优化调度[J]. 电力系统自动化, 2014, 38(17):150-156. |
GAO Yajing, LI Ruihuan, LIANG Haifeng, et al. Power system optimal dispatch incorporating carbon capture power plant and battery swap station under carbon market environment[J]. Automation of Electric Power Systems, 2014, 38(17):150-156. | |
[5] | 吉斌, 刘妍, 朱丽叶, 等. 基于联盟区块链的电力碳权交易机制设计[J]. 华电技术, 2020, 42(8):32-40. |
JI Bin, LIU Yan, ZHU Liye, et al. Design of carbon emission permit trading mechanism in power industry based on consortium blockchain[J]. Huadian Technology, 2020, 42(8):32-40. | |
[6] | 赵国涛, 钱国明, 丁泉, 等. 基于区块链的可再生能源消纳激励机制研究[J]. 华电技术, 2021, 43(4):71-77. |
ZHAO Guotao, QIAN Guoming, DING Quan, et al. Study on incentive mechanism of renewable energy consumption based on blockchain[J]. Huadian Technology, 2021, 43(4):71-77. | |
[7] | 张晓辉, 闫柯柯, 卢志刚, 等. 基于碳交易的含风电系统低碳经济调度[J]. 电网技术, 2013, 37(10):2697-2704. |
ZHANG Xiaohui, YAN Keke, LU Zhigang, et al. Carbon trading based low-carbon economic dispatching for power grid integrated with wind power system[J]. Power System Technology, 2013, 37(10):2697-2704. | |
[8] | 张晓辉, 闫鹏达, 钟嘉庆, 等. 可再生能源激励制度下的低碳经济电源规划[J]. 电网技术, 2015, 39(3):655-662. |
ZHANG Xiaohui, YAN Pengda, ZHONG Jiaqing, et al. Research on generation expansion planning in low-carbon economy environment under incentive mechanism of renewable energy sources[J]. Power System Technology, 2015, 39(3):655-662. | |
[9] | 徐基光. 基于绿色证书交易的含风电系统低碳经济调度[J]. 中国电力, 2016, 49(7):145-150. |
XU Jiguang. Low carbon economic dispatch of wind power system based on green certificate transaction[J]. Electric Power, 2016, 49(7):145-150. | |
[10] | 周任军, 李绍金, 陈瑞先, 等. 采用模糊自修正粒子群算法的碳排放权交易冷热电多目标调度[J]. 中国电机工程学报, 2014, 34(12):6119-6126. |
ZHOU Renjun, LI Shaojin, CHEN Ruixian, et al. Multi-objective scheduling for carbon emissions trading based on fuzzy self-modifying particle swarm optimization[J]. Proceedings of the CSEE, 2014, 34(12):6119-6126. | |
[11] | 肖俊明, 周谦, 瞿博阳, 等. 多目标进化算法及其在电力环境经济调度中的应用综述[J]. 郑州大学学报(工学版), 2016, 37(2):4-12. |
XIAO Junming, ZHOU Qian, QU Boyang, et al. Multi-objective evolutionary algorithm and its application in electric power environment economic dispatch[J]. Journal of Zhengzhou University(Engineering Science), 2016, 37(2):4-12. | |
[12] | 戴光明, 王茂才. 多目标优化算法及在卫星星座设计中的应用[M]. 武汉: 中国地质大学出版社, 2009. |
[13] | 林锉云, 董加礼. 多目标优化的方法与理论[M]. 北京: 清华大学出版社, 1992. |
[14] | 张福威, 李军, 孟品超, 等. 多目标进化算法综述[J]. 长春光学精密机械学院学报, 2012, 35(3):102-105. |
ZHANG Fuwei, LI Jun, MENG Pinchao, et al. Survey of multi-objective evolutionary algorithms[J]. Journal of Changchun Institute of Optics and Fine Mechanics, 2012, 35(3):102-105. | |
[15] | BASU M. Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II[J]. International Journal of Electrical Power&Energy Systems, 2008, 78(2):140-149. |
[16] |
ABIDO M A. Multi-objective particle swarm optimization for environmental/economic dispatch problem[J]. Electric Power Systems Research, 2009, 79(7):1105-1113.
doi: 10.1016/j.epsr.2009.02.005 |
[17] | 朱永胜, 王杰, 瞿博阳, 等. 采用基于分解的多目标进化算法的电力环境经济调度[J]. 电网技术, 2014, 38(6):1577-1584. |
ZHU Yongsheng, WANG Jie, QU Boyang, et al. Environmental economic dispatch adopting multi-objective evolutionary algorithm based on decomposition[J]. Power System Technology, 2014, 38(6):1577-1584. | |
[18] | 丁青锋, 尹晓宇. 差分进化算法综述[J]. 智能系统学报, 2017, 12(4):431-442. |
DING Qingfeng, YIN Xiaoyu. Research survey of differential evolution algorithms[J]. CAAI Transactions on Intelligent Systems, 2017, 12(4):431-442. | |
[19] |
LI H, ZHANG Q. Multi-objective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2009, 13(2):284-302.
doi: 10.1109/TEVC.2008.925798 |
[20] |
ZHANG Q, LI H. MOEA/D:A multi-objective evolutionary algorithm based on decomposition[J]. IEEE Trans on Evolutionary Computation, 2007, 11(6):712-731.
doi: 10.1109/TEVC.2007.892759 |
[21] | TIZHOOSH H R. Opposition-based learning: A new scheme for machine intelligence[A]. Proceeding of the IEEE International Conference of Intelligent Agents Web Technologies and Internet Commerce[C]// Vienna, IEEE Press, 2005:695-701. |
[22] | 卢有麟, 周建中, 李英海, 等. 基于混沌搜索的自适应差分进化算法[J]. 计算机工程与应用, 2008, 44(10) 31-33. |
LU Youlin, ZHOU Jianzhong, LI Yinghai, et al. Adaptive differential evolution algorithm combined with chaotic search[J]. Computer Engineering and Applications, 2008, 44(10) 31-33. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[3] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[4] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[5] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[6] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[7] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[8] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[9] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[10] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[11] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[12] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[13] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[14] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[15] | WANG Yunyun, MA Zhicheng, ZHOU Qiang, DONG Haiying. Robust optimal scheduling of multi-energy cooperative game considering fairness [J]. Integrated Intelligent Energy, 2023, 45(2): 10-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||