Huadian Technology ›› 2021, Vol. 43 ›› Issue (10): 31-42.doi: 10.3969/j.issn.1674-1951.2021.10.004
• Topic Review • Previous Articles Next Articles
ZHOU Yufeng(), WANG Xuetao*(
), LIANG Yanzheng, LUO Shaofeng
Received:
2021-05-07
Revised:
2021-07-23
Published:
2021-10-25
Contact:
WANG Xuetao
E-mail:914956033@qq.com;wxt7682@163.com
CLC Number:
ZHOU Yufeng, WANG Xuetao, LIANG Yanzheng, LUO Shaofeng. Research progress of Fe based catalysts for hydrogen-rich gas production from biomass catalytic gasification[J]. Huadian Technology, 2021, 43(10): 31-42.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.10.004
Tab.1
Dry gas composition, tar content and water conversion rate of olivine and its supported iron catalysts after biomass gasification
催化剂 | 预还原 | 体积分数/% | 焦油产量/(g·m-3) | 焦油转化率/% | 水转化率/% | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
H2 | CO2 | CO | CH4 | ||||||
olivine | 是 | 39.0 | 26.0 | 24.0 | 10.0 | 3.67 | 16 | [20] | |
Fe/olivine | 53.0 | 28.0 | 13.0 | 6.0 | 1.18 | 20 | |||
olivine | 否 | 28.5 | 24.8 | 31.8 | 10.3 | 5.10 | [21] | ||
Fe/olivine | 29.6 | 29.6 | 26.2 | 10.2 | 3.70 | ||||
进口气体 | 是 | 35.0 | 17.0 | 35.0 | 10.0 | [22] | |||
olivine | 是 | 39.2 | 19.1 | 30.2 | 11.4 | 39 | |||
10Fe/olivine1000① | 49.5 | 18.2 | 27.3 | 4.9 | 91 |
[1] | 宋艳苹. 生物质发电技术经济分析[D]. 郑州: 河南农业大学, 2010. |
[2] | 许小荣. 新型镍基催化剂的开发及在生物质催化气化中的应用研究[D]. 武汉: 武汉工业学院, 2009. |
[3] | 江俊飞, 应浩, 蒋剑春, 等. 生物质催化气化研究进展[J]. 生物质化学工程, 2012, 46(4): 52-57. |
JIANG Junfei, YING Hao, JIANG Jianchun, et al. State of the art in biomass catalytic gasification[J]. Biomass Chemical Engineering, 2012, 46(4): 52-57. | |
[4] | 孙海朋, 李润东, 李彦龙, 等. 生物质气化过程中焦油产量影响因素及控制方法研究进展[C]// 2013中国环境科学学会学术年会.昆明, 2013. |
[5] | 孙云娟, 蒋剑春. 生物质气化过程中焦油的去除方法综述[J]. 生物质化学工程, 2006, 40(2): 34-38. |
SUN Yunjuan, JIANG Jianchun. A review of measures for tar elimination in biomass gasification processes[J]. Biomass Chemical Engineering, 2006, 40(2): 34-38. | |
[6] | 鲍振博, 靳登超, 刘玉乐, 等. 生物质气化中焦油的产生及处理方法[J]. 农机化研究, 2011, 33(8): 172-176. |
BAO Zhenbo, JIN Dengchao, LIU Yule, et al. Generation and treatment of tar in biomass gasification gas[J]. Journal of Agricultural Mechanization Research, 2011, 33(8): 172-176. | |
[7] | 周劲松, 王铁柱, 骆仲泱, 等. 生物质焦油的催化裂解研究[J]. 燃料化学学报, 2003, 31(2): 144-148. |
ZHOU Jinsong, WANG Tiezhu, LUO Zhongyang, et al. Catalytic creaking of biomass tar[J]. Journal of Fuel Chemistry and Technology, 2003, 31(2): 144-148. | |
[8] |
TURSUN Y, XU S, ABULIKEMU A, et al. Biomass gasification for hydrogen rich gas in a decoupled triple bed gasifier with olivine and NiO/olivine[J]. Bioresource Technology, 2019, 272: 241-248.
doi: 10.1016/j.biortech.2018.10.008 |
[9] |
ZHANG R, WANG Y, BROWN R C. Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2[J]. Energy Conversion and Management, 2007, 48(1): 68-77.
doi: 10.1016/j.enconman.2006.05.001 |
[10] |
NGO T N L T, CHIANG K Y, LIU C F, et al. Hydrogen production enhancement using hot gas cleaning system combined with prepared Ni-based catalyst in biomass gasification[J]. International Journal of Hydrogen Energy, 2020, 46: 11269-11283.
doi: 10.1016/j.ijhydene.2020.08.279 |
[11] |
GALL D, PUSHP M, LARSSON A, et al. Online measurements of alkali metals during start-up and operation of an industrial-scale biomass gasification plant[J]. Energy & Fuels, 2017, 32(1): 532-541.
doi: 10.1021/acs.energyfuels.7b03135 |
[12] |
JIANG L, HU S, WANG Y, et al. Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15460-15469.
doi: 10.1016/j.ijhydene.2015.08.111 |
[13] | 栾艳春. 铁基催化剂对生物质高温蒸汽气化影响的实验研究[D]. 包头:内蒙古科技大学, 2015. |
[14] | REN J, CAO J P, ZHAO X Y, et al. Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 2019, 116: 109426.1-109426.25. |
[15] |
ISLAM M W. A review of dolomite catalyst for biomass gasification tar removal[J]. Fuel, 2020, 267.DOI: 10.1016/j.fuel.2020.117095.
doi: 10.1016/j.fuel.2020.117095 |
[16] |
QUITETE C, SOUZA M. Application of Brazilian dolomites and mixed oxides as catalysts in tar removal system[J]. Applied Catalysis A: General, 2017, 536: 1-8.
doi: 10.1016/j.apcata.2017.02.014 |
[17] |
NORDGREEN T, LILIEDAHL T, SJÖSTRÖM K. Metallic iron as a tar breakdown catalyst related to atmospheric, fluidised bed gasification of biomass[J]. Fuel, 2006, 85(5-6): 689-694.
doi: 10.1016/j.fuel.2005.08.026 |
[18] |
NORDGREEN T, LILIEDAHL T, SJÖSTRÖM K. Elemental iron as a tar breakdown catalyst in conjunction with atmospheric fluidized bed gasification of biomass: A thermodynamic study[J]. Energy & Fuels, 2006, 20(3): 890-895.
doi: 10.1021/ef0502195 |
[19] |
SHEN Y, ZHAO P, SHAO Q, et al. In situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification[J]. Applied Catalysis B: Environmental, 2014, 152-153: 140-151.
doi: 10.1016/j.apcatb.2014.01.032 |
[20] |
TAMHANKAR S S, TSUCHIYA K, RIGGS J B. Catalytic cracking of benzene on iron oxide-silica: Catalyst activity and reaction mechanism[J]. Applied Catalysis, 1985, 16(1): 103-121.
doi: 10.1016/S0166-9834(00)84073-7 |
[21] |
SERGIO R, VIRGINIE M, GALLUCCI K, et al. Fe/olivine catalyst for biomass steam gasification: Preparation, characterization and testing at real process conditions[J]. Catalysis Today, 2011, 176(1): 163-168.
doi: 10.1016/j.cattod.2010.11.098 |
[22] |
VIRGINIE M, ADÁNEZ J, COURSON C, et al. Effect of Fe-olivine on the tar content during biomass gasification in a dual fluidized bed[J]. Applied Catalysis B :Environmental, 2012, 121-122: 214-222.
doi: 10.1016/j.apcatb.2012.04.005 |
[23] |
VIRGINIE M, COURSON C, NIZNANSKY D, et al. Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification[J]. Applied Catalysis B:Environmental, 2010, 101(1-2): 90-100.
doi: 10.1016/j.apcatb.2010.09.011 |
[24] |
GONZALEZ J C, GONZALEZ M G, LABORDE M A, et al. Effect of temperature and reduction on the activity of high temperature water gas shift catalysts[J]. Applied Catalysis, 1986, 20: 3-13.
doi: 10.1016/0166-9834(86)80005-7 |
[25] | ZHU M, TIAN P, CHEN J, et al. Activation and deactivation of the commercial‐type CuO-Cr2O3-Fe2O3 high temperature shift catalyst[J]. AIChE Journal, 2020, 66(1). |
[26] |
MESHKANI F, REZAEI M, JAFARBEGLOO M. Preparation of nanocrystalline Fe2O3-Cr2O3-CuO powder by a modified urea hydrolysis method: A highly active and stable catalyst for high temperature water gas shift reaction[J]. Materials Research Bulletin, 2015, 64: 418-424.
doi: 10.1016/j.materresbull.2014.12.038 |
[27] | BYRON S, LOGANATHAN M, SHANTHA M S. A review of the water gas shift reaction kinetics[J]. International Journal of Chemical Reactor Engineering, 2010, 8(1). |
[28] |
KRAUSE T, SOULEIMANOVA R, KREBS J, et al. Water gas shift catalysis[J]. Catalysis Reviews, 2009, 51(3): 325-440.
doi: 10.1080/01614940903048661 |
[29] |
MATSUOKA K, SHIMBORI T, KURAMOTO K, et al. Steam reforming of woody biomass in a fluidized bed of iron oxide-impregnated porous alumina[J]. Energy & Fuels, 2006, 20(6): 2727-2731.
doi: 10.1021/ef060301f |
[30] |
UDDIN M A, TSUDA H, WU S, et al. Catalytic decomposition of biomass tars with iron oxide catalysts[J]. Fuel, 2008, 87(4-5): 451-459.
doi: 10.1016/j.fuel.2007.06.021 |
[31] |
LAAN G P V D, BEENACKERS A A C M. Intrinsic kinetics of the gas-solid Fischer-Tropsch and water gas shift reactions over a precipitated iron catalyst[J]. Applied Catalysis A: General, 2000, 193(1-2): 39-53.
doi: 10.1016/S0926-860X(99)00412-3 |
[32] | YU J, TIAN F J, MCKENZIE L J, et al. Char-supported nano iron catalyst for water-gas shift reaction: Hydrogen production from coal/biomass gasification[J]. Process Safety & Environmental Protection, 2006, 84(2): 125-130. |
[33] | TEMKIN M I. The kinetics of some industrial heterogeneous catalytic reactions[J]. Advances in Catalysis, 1979, 28(14): 173-291. |
[34] |
TINKLE M, DUMESIC J A. Isotopic exchange measurements of the rates of adsorption desorption and interconversion of CO and CO2 over chromia-promoted magnetite implications for water-gas shift[J]. Journal of Catalysis, 1987, 103(1): 65-78.
doi: 10.1016/0021-9517(87)90093-5 |
[35] | KANEKO Y, OKI S. On the mechanism of water gas shift reaction:PartⅠ: Determination of the stoichiometric number of rate-determining step by means of deuterium as tracer[J]. Journal of the Research Institute for Catalysis Hokkaido University, 1965, 13(1): 55-65. |
[36] | KANEKO Y, OKI S. On the mechanism of water gas shift reaction:PartⅡ: Determination of stoichiometric number of rate-determining step by means of 14C as tracer.[J]. Journal of the Research Institute for Catalysis Hokkaido University, 1966, 13(3): 1273-1277. |
[37] | KANEKO Y, OKI S. ON The mechanism of water gas shift reaction :Part Ⅲ: Determination of stoichiometric number of rate-determining step in the neighbourhood of equilibrium of the reaction[J]. Journal of the Research Institute for Catalysis Hokkaido University, 1967, 15(3): 248-257. |
[38] |
MEZAKI R, OKI S. Locus of the change in the rate-determining step[J]. Journal of Catalysis, 1973, 30(3): 488-489.
doi: 10.1016/0021-9517(73)90168-1 |
[39] |
AMADEO N E, LABORDE M A. Hydrogen production from the low-temperature water-gas shift reaction: Kinetics and simulation of the industrial reactor[J]. International Journal of Hydrogen Energy, 1995, 20(12): 949-956.
doi: 10.1016/0360-3199(94)00130-R |
[40] |
COURSON, C, COURSON C, KIENNEMANN A, ZAMBONI I, et al. Fe-Ca interactions in Fe-based/CaO catalyst/sorbent for CO2 sorption and hydrogen production from toluene steam reforming[J]. Applied Catalysis B:Environmental, 2017, 203: 154-165.
doi: 10.1016/j.apcatb.2016.10.024 |
[41] |
NORDGREEN T, NEMANOVA V, ENGVALL K, et al. Iron-based materials as tar depletion catalysts in biomass gasification: Dependency on oxygen potential[J]. Fuel, 2012, 95: 71-78.
doi: 10.1016/j.fuel.2011.06.002 |
[42] |
GUAN G, CHEN G, KASAI Y, et al. Catalytic steam reforming of biomass tar over iron- or nickel-based catalyst supported on calcined scallop shell[J]. Applied Catalysis B:Environmental, 2012, 115-116: 159-168.
doi: 10.1016/j.apcatb.2011.12.009 |
[43] |
MENG J, ZHAO Z, WANG X, et al. Effects of catalyst preparation parameters and reaction operating conditions on the activity and stability of thermally fused Fe-olivine catalyst in the steam reforming of toluene[J]. International Journal of Hydrogen Energy, 2017, 43(1): 127-138.
doi: 10.1016/j.ijhydene.2017.11.037 |
[44] |
FELICE L D, COURSON C, NIZNANSKY D, et al. Biomass gasification with catalytic tar reforming: A model study into activity enhancement of calcium- and magnesium-oxide-based catalytic materials by incorporation of iron[J]. Energy & Fuels, 2010, 24(7): 4034-4045.
doi: 10.1021/ef100351j |
[45] |
HUANG B S, CHEN H Y, CHUANG K H, et al. Hydrogen production by biomass gasification in a fluidized-bed reactor promoted by an Fe/CaO catalyst[J]. International Journal of Hydrogen Energy, 2012, 37(8): 6511-6518.
doi: 10.1016/j.ijhydene.2012.01.071 |
[46] |
POLYCHRONOPOULOU K, BAKANDRITSOS A, TZITZIOS V, et al. Absorption-enhanced reforming of phenol by steam over supported Fe catalysts[J]. Journal of Catalysis, 2006, 241(1): 132-148.
doi: 10.1016/j.jcat.2006.04.015 |
[47] |
POLYCHRONOPOULOU K, COSTA C N, EFSTATHIOU A M. The role of oxygen and hydroxyl support species on the mechanism of H2 production in the steam reforming of phenol over metal oxide-supported Rh and Fe catalysts[J]. Catalysis Today, 2006, 112(1-4): 89-93.
doi: 10.1016/j.cattod.2005.11.037 |
[48] |
DIEGO L F D, ORTIZ M, GARCIA-LABIANO F, et al. Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers[J]. Journal of Power Sources, 2009, 192(1): 27-34.
doi: 10.1016/j.jpowsour.2008.11.038 |
[49] | FAN L S, LIANG Z, WANG W, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion:Prospect and opportunity[J]. Energy & Environmental Science, 2012, 5(6): 7254-7280. |
[50] |
ZENG J, XIAO R, ZHANG H, et al. Syngas production via biomass self-moisture chemical looping gasification[J]. Biomass and Bioenergy, 2017, 104 :1-7.
doi: 10.1016/j.biombioe.2017.03.020 |
[51] |
GE H, GUO W, SHEN L, et al. Biomass gasification using chemical looping in a 25 kWth reactor with natural hematite as oxygen carrier[J]. Chemical Engineering Journal, 2016, 286: 174-183.
doi: 10.1016/j.cej.2015.10.092 |
[52] |
ZZENG J, XIAO R, ZENG D, et al. High H2/CO ratio syngas production from chemical looping gasification of sawdust in a dual fluidized bed gasifier[J]. Energy & Fuels, 2016, 30(3): 1764-1770.
doi: 10.1021/acs.energyfuels.5b02204 |
[53] |
KANG K S, KIM C H, BAE K K, et al. Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12246-12254.
doi: 10.1016/j.ijhydene.2010.08.043 |
[54] |
SAMPRÓN I, DIEGO L F D, GARCÍA-LABIANO F, et al. Biomass chemical looping gasification of pine wood using a synthetic Fe2O3/Al2O3 oxygen carrier in a continuous unit:Science direct[J]. Bioresource Technology, 2020, 316: 123908.
doi: 10.1016/j.biortech.2020.123908 |
[55] |
HUANG X, WU J, WANG M, et al. Syngas production by chemical looping gasification of rice husk using Fe-based oxygen carrier[J]. Journal of the Energy Institute, 2020, 93(4): 1261-1270.
doi: 10.1016/j.joei.2019.11.009 |
[56] |
ZACHARIAS R, VISENTIN S, BOCK S, et al. High-pressure hydrogen production with inherent sequestration of a pure carbon dioxide stream via fixed bed chemical looping[J]. International Journal of Hydrogen Energy, 2019, 44(16): 7943-7957.
doi: 10.1016/j.ijhydene.2019.01.257 |
[57] | 魏泽华, 刘道诚, 荆洁颖, 等. 化学链燃烧中铁基载氧体研究进展[J]. 洁净煤技术, 2019, 25(3): 19-27. |
WEI Zehua, LIU Daocheng, JING Jieying, et al. Research progress on Fe-based oxygen carrier in chemical looping combustion[J]. Clean Coal Technology, 2019, 25(3): 19-27. | |
[58] |
KIDAMBI P R, CLEETON J P E, SCOTT S A, et al. Interaction of iron oxide with alumina in a composite oxygen carrier during the production of hydrogen by chemical looping[J]. Energy Fuels, 2012, 26(1): 603-617.
doi: 10.1021/ef200859d |
[59] |
LIU W, ISMAIL M, DUNSTAN M T, et al. Inhibiting the interaction between FeO and Al2O3 during chemical looping production of hydrogen[J]. RSC Advances, 2015, 5(3): 1759-1771.
doi: 10.1039/C4RA11891J |
[60] |
HU Q, SHEN Y, CHEW J W, et al. Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production[J]. Chemical Engineering Journal, 2020, 379: 122346.
doi: 10.1016/j.cej.2019.122346 |
[61] |
HU Q, WANG C H. Insight into the Fe2O3/CaO-based chemical looping process for biomass conversion[J]. Bioresource Technology, 2020, 310(2): 123384.
doi: 10.1016/j.biortech.2020.123384 |
[62] |
CHEN Z, LIAO Y, LIU G, et al. Application of Mn-Fe composite oxides loaded on alumina as oxygen carrier for chemical looping gasification[J]. Waste and Biomass Valorization, 2020, 11(11) :6395-6409.
doi: 10.1007/s12649-019-00855-y |
[63] | 陈智豪, 廖艳芬, 莫菲, 等. MnFeO3和MnFe2O4氧载体在稻草化学链气化中的应用[J]. 化工学报, 2019, 70(12): 323-334. |
CHEN Zhihao, LIAO Yanfen, MO Fei, et al. Application of MnFeO3 and MnFe2O4 as oxygen carriers for straw chemical looping gasification[J]. CIESC Journal, 2019, 70(12): 323-334. | |
[64] | 杨伟进, 王坤, 赵海波, 等. 过渡金属修饰Fe2O3/Al2O3氧载体的Redox性能研究[J]. 燃料化学学报, 2015, 43(5) :635-640. |
YANG Weijin, WANG Kun, ZHAO Haibo, et al. Investigation on redox performance of transition metal decorated Fe2O3/Al2O3 oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2015, 43(5): 635-640. | |
[65] |
SHEN T, GE H, SHEN L. Characterization of combined Fe-Cu oxides as oxygen carrier in chemical looping gasification of biomass[J]. International Journal of Greenhouse Gas Control, 2018, 75: 63-73.
doi: 10.1016/j.ijggc.2018.05.021 |
[66] | 陈钦冬. 生物质化学链气化过程中铁基氧载体的反应特性及改性研究[D]. 武汉:华中科技大学, 2016. |
[67] |
ZHENG A, FAN Y, WEI G, et al. Chemical looping gasification of torrefied biomass using NiFe2O4 as an oxygen carrier for syngas production and tar removal[J]. Energy & Fuels, 2020, 34(5) :6008-6019.
doi: 10.1021/acs.energyfuels.0c00584 |
[68] |
KELLER M, LEION H, MATTISSON T. Chemical looping tar reforming using La/Sr/Fe-containing mixed oxides supported on ZrO2[J]. Applied Catalysis B: Environmental, 2016, 183: 298-307.
doi: 10.1016/j.apcatb.2015.10.047 |
[69] |
SUN R, YAN J, SHEN L, et al. Performance and mechanism study of LaFeO3 for biomass chemical looping gasification[J]. Journal of Materials Science, 2020, 55(10): 11151-11166.
doi: 10.1007/s10853-020-04890-2 |
[70] |
YAN X, HU J, ZHANG Q, et al. Chemical-looping gasification of corn straw with Fe-based oxygen carrier: Thermogravimetric analysis[J]. Bioresource Technology, 2020, 303: 122904.
doi: 10.1016/j.biortech.2020.122904 |
[71] |
TAVARES R, RAMOS A, ROUBOA A. Microplastics thermal treatment by polyethylene terephthalate-biomass gasification[J]. Energy Conversion and Management, 2018, 162: 118-131.
doi: 10.1016/j.enconman.2018.02.001 |
[72] | LIU Q, HU C, PENG B, et al. High H2/CO ratio syngas production from chemical looping CO-gasification of biomass and polyethylene with CaO/Fe2O3 oxygen carrier[J]. Energy Conversion & Management, 2019, 199: 111951.1-111951.10. |
[1] | LI Feifei, WANG Shuhong, CUI Jindong. Study on influencing factors of automobile carbon emissions from the perspective of whole life cycle: A case study of Jilin Province [J]. Integrated Intelligent Energy, 2024, 46(8): 20-27. |
[2] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[3] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[4] | DOU Zhenlan, LI Jiawen, ZHANG Chunyan, CAI Zhenqi, YUAN Benfeng, JIA Kunqi, XIAO Guoping, WANG Jianqiang. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells [J]. Integrated Intelligent Energy, 2024, 46(7): 53-62. |
[5] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[6] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[7] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[8] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[9] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[10] | LI Yangao, LIN Jian, MA Yutong. Risk analysis and response strategies of grid enterprises' electricity purchasing agent service under electricity reform [J]. Integrated Intelligent Energy, 2024, 46(3): 79-86. |
[11] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[12] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
[13] | CUI Jindong, WANG Yuqing. Research on user-side energy storage coordinated and optimized scheduling mechanism under cloud energy storage mode [J]. Integrated Intelligent Energy, 2023, 45(9): 18-25. |
[14] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[15] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||