Huadian Technology ›› 2021, Vol. 43 ›› Issue (11): 128-137.doi: 10.3969/j.issn.1674-1951.2021.11.014
• Prospective Technologies • Previous Articles Next Articles
LIAN Shaohan1(), LI Run1, ZHANG Zezhou1, LIU Qingling1, HAN Rui1, ZHAO Jun2, SONG Chunfeng1,*(
)
Received:
2021-07-27
Revised:
2021-09-28
Published:
2021-11-25
Contact:
SONG Chunfeng
E-mail:shaohan_lian@163.com;song@tju.edu.cn
CLC Number:
LIAN Shaohan, LI Run, ZHANG Zezhou, LIU Qingling, HAN Rui, ZHAO Jun, SONG Chunfeng. Advances of composite membranes in CO2 separation[J]. Huadian Technology, 2021, 43(11): 128-137.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.11.014
Tab.1
Comparison of mixed matrix membranes with solid fillers on CO2 separation
填料/聚合物基质 | CO2的渗透性/Barrer | CO2/N2 选择性 | 参考文献 |
---|---|---|---|
GO/HCM | 474 | 56.0 | [ |
ZIF-8/Pebax | 100 | 60.0 | [ |
ZIF-67/Pebax | 162 | 81.0 | [ |
MIL-101/Pebax | 71 | 47.0 | [ |
MIL-53/Pebax | 129 | 58.0 | [ |
OH-ZIF/Pebax | 273 | 38.0 | [ |
NH2-MIL-101/Pebax | 74 | 43.0 | [ |
NH2-MIL-53/CA | 53 | 23.0 | [ |
NH2-MIL-53/Pebax | 149 | 55.0 | [ |
COF-5/Pebax | 493 | 49.0 | [ |
SNW-1/PIM-1 | 7 954 | 20.0 | [ |
Tab.2
Comparison of mixed matrix membranes with liquid fillers on CO2 separation
填料/聚合物基质 | CO2的渗透性/ Barrer | CO2/N2 选择性 | 参考文献 |
---|---|---|---|
Glycerol/Pebax | 50 | 233.0 | [ |
[BMIM][CF3SO3] /Pebax | 300 | 40.0 | [ |
[Bmim][BF4]/Nexar | 200 | 130.0 | [ |
Poly([Pyr11][C(CN)3]/[C2mim][C(CN)3] | 439 | 64.0 | [ |
Poly([Pyr11][C(CN)3]/[C2mim][B(CN)4] | 472 | 54.0 | [ |
mPEG/Nafion | 446 | 31.0 | [ |
Tab.3
Comparison of ternary mixed matrix membranes on CO2 separation
成分 | CO2的渗透性/Barrer | CO2/N2 选择性 | CO2/CH4 选择性 | 参考文献 |
---|---|---|---|---|
Pebax/ILs/NiZnFe4O4 | 300 | 248.0 | — | [ |
Pebax/Glycerol/Cu | 64 | 200.0 | — | [ |
Matrimid/PEG 200/ZSM-5 | 11 | — | 60.0 | [ |
Pebax/[Hmim][NTf]/LDHN | 644 | — | 34.0 | [ |
PES/[EMIM][NTf2]/h-BN | 747 252 | — | 1.8 | [ |
PES/[EMIM][NTf2]/MoS2 | 153 112 | — | 1.4 | [ |
[1] | 胡小夫, 沈建永, 王桦, 等. 氨基修饰多孔固体吸附剂吸附CO2的研究进展[J]. 华电技术, 2020, 42(10):36-40. |
HU Xiaofu, SHEN Jianyong, WANG Hua, et al. Research progress in amino-modification porous solid adsorbents applied in CO2 adsorption[J]. Huadian Technology, 2020, 42(10):36-40. | |
[2] | 赵睿恺, 赵力, 赵军. 面向碳中和目标的变温吸附碳捕集效能与技术经济性分析[J]. 华电技术, 2021, 43(6):41-46. |
ZHAO Ruikai, ZHAO Li, ZHAO Jun. Effectiveness and techno-economic analysis on temperature swing adsorption for CO2 capture targeting at carbon neutrality[J]. Huadian Technology, 2021, 43(6):41-46. | |
[3] | 邢晨健, 钱煜, 周燃, 等. 太阳能聚光光伏-余热碳捕集利用方式分析[J]. 华电技术, 2020, 42(4):84-88. |
XING Chenjian, QIAN Yu, ZHOU Ran, et al. Analysis of utilization modes combining concentrating photovoltaic power generation and photovoltaic residual heat driving carbon capture[J]. Huadian Technology, 2020, 42(4):84-88. | |
[4] |
YAN X, ANGUILLE S, BENDAHAN M, et al. Ionic liquids combined with membrane separation processes: A review[J]. Separation and Purification Technology, 2019, 222:230-253.
doi: 10.1016/j.seppur.2019.03.103 |
[5] | 郭智, 张新妙, 章晨林, 等. 膜分离法分离烟气中CO2材料及应用研究进展[J]. 现代化工, 2016, 36(6):42-45,47. |
GUO Zhi, ZHANG Xinmiao, ZHANG Chenlin, et al. Research development of membrane materials for separation of CO2 from flue gas[J]. Modern Chemical Industry, 2016, 36(6):42-45,47. | |
[6] |
ZHAN T, WU T, SHI Y, et al. Influence of synjournal parameters on preparation of AlPO-18 membranes by single DIPEA for CO2/CH4 separation[J]. Journal of Membrane Science, 2020, 601:117853.
doi: 10.1016/j.memsci.2020.117853 |
[7] |
LIN R, VILLACORTA B, GE L, et al. Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces[J]. Journal of Materials Chemistry A, 2018, 6(2):293-312.
doi: 10.1039/C7TA07294E |
[8] | 冯雨轩, 耿康, 曹凯鹏. 混合基质膜在CO2气体分离中的研究进展[J]. 高分子通报, 2018(8):105-111. |
FENG Yuxuan, GENG Kang, CAO Kaipeng. Recent advances of mixed matrix membranes in CO2 separation[J]. Polymer Bulletin, 2018(8):105-111. | |
[9] | 王少飞. 聚氧乙烯基碳捕集膜的多级结构调控与传递机制强化[D]. 天津:天津大学, 2016. |
[10] | TRICKETT C A, HELAL A, AL-MAYTHALONY B A, et al. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nature Reviews Materials, 2017, 2(8):1-16. |
[11] |
VINOBA M, BHAGIYALAKSHMI M, ALQAHEEM Y, et al. Recent progress of fillers in mixed matrix membranes for CO2 separation:A review[J]. Separation and Purification Technology, 2017, 188:431-450.
doi: 10.1016/j.seppur.2017.07.051 |
[12] |
QUAN S, LI S W, XIAO Y C, et al. CO2-selective mixed matrix membranes(MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture[J]. International Journal of Greenhouse Gas Control, 2017, 56:22-29.
doi: 10.1016/j.ijggc.2016.11.010 |
[13] |
ZHENG W, DING R, YANG K, et al. ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs[J]. Separation and Purification Technology, 2019, 214:111-119.
doi: 10.1016/j.seppur.2018.04.010 |
[14] |
MESHKAT S, KALIAGUINE S, RODRIGUE D. Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation[J]. Separation and Purification Technology, 2020, 235:116150.
doi: 10.1016/j.seppur.2019.116150 |
[15] |
MAJUMDAR S, TOKAY B, MARTIN-GIL V, et al. Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation[J]. Separation and Purification Technology, 2020, 238:116411.
doi: 10.1016/j.seppur.2019.116411 |
[16] |
MESHKAT S, KALIAGUINE S, RODRIGUE D. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax®MH-1657 for CO2 separation[J]. Separation and Purification Technology, 2018, 200:177-190.
doi: 10.1016/j.seppur.2018.02.038 |
[17] |
GAO J, MAO H, JIN H, et al. Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation[J]. Microporous and Mesoporous Materials, 2020, 297:110030.
doi: 10.1016/j.micromeso.2020.110030 |
[18] | MUBASHIR M, YEONG Y F, LAU K K, et al. Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53(Al)/cellulose acetate(CA) mixed matrix membranes[J]. Separation & Purification Technology, 2018, 199:140-151. |
[19] |
DUAN K, WANG J, ZHANG Y, et al. Covalent organic frameworks(COFs) functionalized mixed matrix membrane for effective CO2/N2 separation[J]. Journal of Membrane Science, 2019, 572:588-595.
doi: 10.1016/j.memsci.2018.11.054 |
[20] |
WU X, TIAN Z, WANG S, et al. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation[J]. Journal of Membrane Science, 2017, 528:273-283.
doi: 10.1016/j.memsci.2017.01.042 |
[21] |
SHAHID S, NIJMEIJER K. Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures[J]. Journal of Membrane Science, 2014, 470:166-177.
doi: 10.1016/j.memsci.2014.07.034 |
[22] |
MAJUMDAR S, TOKAY B, MARTIN-GIL V, et al. Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation[J]. Separation and Purification Technology, 2020, 238:116411.
doi: 10.1016/j.seppur.2019.116411 |
[23] |
AHMAD M Z, NAVARRO M, LHOTKA M, et al. Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives[J]. Journal of Membrane Science, 2018, 558:64-77.
doi: 10.1016/j.memsci.2018.04.040 |
[24] | SONG C, LI R, FAN Z, et al. CO2/N2 separation performance of Pebax/MIL-101 and Pebax /NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation[J]. Separation and Purification Technology, 2020, 238:11650016. |
[25] | ANJUM M W, VERMOORTELE F, KHAN A L, et al. Modulated UiO-66-based mixed-matrix membranes for CO2 separation[J]. ACS Applied Materials & Interfaces, 2015, 7(45):25193-25201. |
[26] |
CHENG Y, ZHAI L, YING Y, et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers[J]. Journal of Materials Chemistry A, 2019, 7(9):4549-4560.
doi: 10.1039/C8TA10333J |
[27] |
WANG M, QUAN K, ZHENG X, et al. Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation[J]. Separation and Purification Technology, 2020, 237(135):116457.
doi: 10.1016/j.seppur.2019.116457 |
[28] |
YUSUF M, KHAN A, ADEWOLE J K, et al. Biomass derived carboxylated carbon nanosheets blended polyetherimide membranes for enhanced CO2/CH4 separation[J]. Journal of Natural Gas Science and Engineering, 2020, 75:103156.
doi: 10.1016/j.jngse.2020.103156 |
[29] |
CHENG Y, YING Y, ZHAI L, et al. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation[J]. Journal of Membrane Science, 2019, 573:97-106.
doi: 10.1016/j.memsci.2018.11.060 |
[30] |
JIA M, FENG Y, QIU J, et al. Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation[J]. Separation and Purification Technology, 2019, 213:63-69.
doi: 10.1016/j.seppur.2018.12.029 |
[31] |
BLANCHARD L A, GU Z, BRENNECKE J F. High-pressure phase behavior of ionic liquid/CO2 systems[J]. The Journal of Physical Chemistry B, 2001, 105(12):2437-2444.
doi: 10.1021/jp003309d |
[32] |
ZENG S, ZHANG X, BAI L, et al. Ionic-liquid-based CO2 capture systems: Structure, interaction and process[J]. Chemical Reviews, 2017, 117(14):9625-9673.
doi: 10.1021/acs.chemrev.7b00072 |
[33] |
ZHANG X, ZHANG X, DONG H, et al. Carbon capture with ionic liquids: Overview and progress[J]. Energy and Environmental Science, 2012, 5(5):6668-6681.
doi: 10.1039/c2ee21152a |
[34] |
AGHAIE M, REZAEI N, ZENDEHBOUDI S. A systematic review on CO2 capture with ionic liquids: Current status and future prospects[J]. Renewable and Sustainable Energy Reviews, 2018, 96:502-525.
doi: 10.1016/j.rser.2018.07.004 |
[35] |
GAO H, BAI L, HAN J, et al. Functionalized ionic liquid membranes for CO2 separation[J]. Chemical Communications, 2018, 54(90):12671-12685.
doi: 10.1039/C8CC07348A |
[36] |
KLEPIĆ M, SETNIČKOVÁ K, LANČ M, et al. Permeation and sorption properties of CO2-selective blend membranes based on polyvinyl alcohol (PVA) and 1-ethyl-3-methylimidazolium dicyanamide([EMIM][DCA]) ionic liquid for effective CO2/H2 separation[J]. Journal of Membrane Science, 2020, 597:117623.
doi: 10.1016/j.memsci.2019.117623 |
[37] |
ZIA-UL-MUSTAFA M, MUKHTAR H, NORDIN N A H M, et al. Effect of imidazolium based ionic liquids on PES membrane for CO2/CH4 separation[J]. Materials Today: Proceedings, 2019, 16:1976-1982.
doi: 10.1016/j.matpr.2019.06.076 |
[38] |
TOMÉ L C, ISIK M, FREIRE C S R, et al. Novel pyrrolidinium-based polymeric ionic liquids with cyano counter-anions: High performance membrane materials for post-combustion CO2 separation[J]. Journal of Membrane Science, 2015, 483:155-165.
doi: 10.1016/j.memsci.2015.02.020 |
[39] |
TEODORO R M, TOMÉ L C, MANTIONE D, et al. Mixing poly(ionic liquid)s and ionic liquids with different cyano anions: Membrane forming ability and CO2/N2 separation properties[J]. Journal of Membrane Science, 2018, 552:341-348.
doi: 10.1016/j.memsci.2018.02.019 |
[40] |
DAI Z, ANSALONI L, RYAN J J, et al. Incorporation of an ionic liquid into a midblock-sulfonated multiblock polymer for CO2 capture[J]. Journal of Membrane Science, 2019, 588:117193.
doi: 10.1016/j.memsci.2019.117193 |
[41] |
BERNARDO P, JANSEN J C, BAZZARELLI F, et al. Gas transport properties of Pebax®/room temperature ionic liquid gel membranes[J]. Separation and Purification Technology, 2012, 97:73-82.
doi: 10.1016/j.seppur.2012.02.041 |
[42] | FARROKHARA M, DOROSTI F. New high permeable polysulfone/ionic liquid membrane for gas separation[J]. Chinese Journal of Chemical Engineering, 2020. |
[43] |
YIN J, ZHANG C, YU Y, et al. Tuning the microstructure of crosslinked Poly(ionic liquid) membranes and gels via a multicomponent reaction for improved CO2 capture performance[J]. Journal of Membrane Science, 2020, 593:117405.
doi: 10.1016/j.memsci.2019.117405 |
[44] |
LIM J Y, LEE J H, PARK M S, et al. Hybrid membranes based on ionic-liquid-functionalized poly(vinyl benzene chloride) beads for CO2 capture[J]. Journal of Membrane Science, 2019, 572:365-373.
doi: 10.1016/j.memsci.2018.11.030 |
[45] |
DAI Z, ABOUKEILA H, ANSALONI L, et al. Nafion/PEG hybrid membrane for CO2 separation: Effect of PEG on membrane micro-structure and performance[J]. Separation and Purification Technology, 2019, 214:67-77.
doi: 10.1016/j.seppur.2018.03.062 |
[46] |
SANAEEPUR H, AHMADI R, EBADI AMOOGHIN A, et al. A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block-amide)(Pebax 1657)/copper nanoparticles for CO2 separation[J]. Journal of Membrane Science, 2019, 573:234-246.
doi: 10.1016/j.memsci.2018.12.012 |
[47] |
AZIZI N, MAHDAVI H R, ISANEJAD M, et al. Effects of low and high molecular mass PEG incorporation into different types of poly(ether-b-amide) copolymers on the permeation properties of CO2 and CH4[J]. Journal of Polymer Research, 2017, 24(9):141.
doi: 10.1007/s10965-017-1297-1 |
[48] |
DAI Z, NOBLE R D, GIN D L, et al. Combination of ionic liquids with membrane technology: A new approach for CO2 separation[J]. Journal of Membrane Science, 2016, 497:1-20.
doi: 10.1016/j.memsci.2015.08.060 |
[49] |
GUO X, QIAO Z, LIU D, et al. Mixed-matrix membranes for CO2 separation: Role of the third component[J]. Journal of Materials Chemistry A, 2019, 7(43):24738-24759.
doi: 10.1039/C9TA09012F |
[50] |
VU M T, LIN R, DIAO H, et al. Effect of ionic liquids (ILs) on MOFs/polymer interfacial enhancement in mixed matrix membranes[J]. Journal of Membrane Science, 2019, 587:117157.
doi: 10.1016/j.memsci.2019.05.081 |
[51] |
HUANG G, ISFAHANI A P, MUCHTAR A, et al. Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture[J]. Journal of Membrane Science, 2018, 565:370-379.
doi: 10.1016/j.memsci.2018.08.026 |
[52] | RHYU S Y, CHO Y, KANG S W. Nanocomposite membranes consisting of poly(ethylene oxide)/ionic liquid/ZnO for CO2 separation[J]. Journal of Industrial and Engineering Chemistry, 2020(2019):2-7. |
[53] |
LEE W G, KANG S W. Highly selective poly(ethylene oxide)/ionic liquid electrolyte membranes containing CrO3 for CO2/N2 separation[J]. Chemical Engineering Journal, 2019, 356:312-317.
doi: 10.1016/j.cej.2018.09.049 |
[54] |
KAMBLE A R, PATEL C M, MURTHY Z V P. Polyethersulfone based MMMs with 2D materials and ionic liquid for CO2, N2 and CH4 separation[J]. Journal of Environmental Management, 2020, 262:110256.
doi: 10.1016/j.jenvman.2020.110256 |
[55] |
DING S, LI X, DING S, et al. Ionic liquid-decorated nanocages for cooperative CO2 transport in mixed matrix membranes[J]. Separation and Purification Technology, 2020, 239:116539.
doi: 10.1016/j.seppur.2020.116539 |
[56] |
KALANTARI S, OMIDKHAH M, EBADI AMOOGHIN A, et al. Superior interfacial design in ternary mixed matrix membranes to enhance the CO2 separation performance[J]. Applied Materials Today, 2020, 18:100491.
doi: 10.1016/j.apmt.2019.100491 |
[57] |
YASMEEN I, ILYAS A, SHAMAIR Z, et al. Synergistic effects of highly selective ionic liquid confined in nanocages: Exploiting the three component mixed matrix membranes for CO2 capture[J]. Chemical Engineering Research and Design, 2020, 155:123-132.
doi: 10.1016/j.cherd.2020.01.006 |
[58] |
MA J, YING Y, GUO X, et al. Fabrication of mixed-matrix membrane containing metal-organic framework composite with task-specific ionic liquid for efficient CO2 separation[J]. Journal of Materials Chemistry A, 2016, 4(19):7281-7288.
doi: 10.1039/C6TA02611G |
[59] |
LOLOEI M, OMIDKHAH M, MOGHADASSI A, et al. Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation[J]. International Journal of Greenhouse Gas Control, 2015, 39:225-235.
doi: 10.1016/j.ijggc.2015.04.016 |
[60] |
MUHAMMAD R D, ISLAM A, HAMIDULLAH U, et al. Effect of alumina on the performance and characterization of cross-linked PVA/PEG600 blended membranes for CO2/N2 separation[J]. Separation and Purification Technology, 2019, 210:627-635.
doi: 10.1016/j.seppur.2018.08.026 |
[61] |
AZIZI N, MOHAMMADI T, MOSAYEBI R. Synjournal of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4[J]. Journal of Natural Gas Science and Engineering, 2017, 37:39-51.
doi: 10.1016/j.jngse.2016.11.038 |
[62] |
YOON K W, KIM H, KANG Y S, et al. 1-Butyl-3-methylimidazolium tetrafluoroborate/zinc oxide composite membrane for high CO2 separation performance[J]. Chemical Engineering Journal, 2017, 320:50-54.
doi: 10.1016/j.cej.2017.03.026 |
[63] |
IARIKOV D D, HACARLIOGLU P, OYAMA S T. Supported room temperature ionic liquid membranes for CO2/CH4 separation[J]. Chemical Engineering Journal, 2011, 166(1):401-406.
doi: 10.1016/j.cej.2010.10.060 |
[64] |
SCHOTT J A, DO-THANH C, MAHURIN S M, et al. Supported bicyclic amidine ionic liquids as a potential CO2/N2 separation[J]. Journal of Membrane Science, 2018, 565:203-212.
doi: 10.1016/j.memsci.2018.08.012 |
[65] |
KAROUSOS D S, LABROPOULOS A I, SAPALIDIS A, et al. Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas[J]. Chemical Engineering Journal, 2017, 313:777-790.
doi: 10.1016/j.cej.2016.11.005 |
[66] |
LIU Z, LIU C, LI L, et al. CO2 separation by supported ionic liquid membranes and prediction of separation performance[J]. International Journal of Greenhouse Gas Control, 2016, 53:79-84.
doi: 10.1016/j.ijggc.2016.07.041 |
[67] |
SHAMAIR Z, HABIB N, GILANI M A, et al. Theoretical and experimental investigation of CO2 separation from CH4 and N2 through supported ionic liquid membranes[J]. Applied Energy, 2020, 268:115016.
doi: 10.1016/j.apenergy.2020.115016 |
[68] |
LU P, LIU Y, ZHOU T, et al. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations[J]. Journal of Membrane Science, 2018, 567:89-103.
doi: 10.1016/j.memsci.2018.09.041 |
[69] |
CHEN D, YING W, GUO Y, et al. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane[J]. ACS Applied Materials and Interfaces, 2017, 9(50):44251-44257.
doi: 10.1021/acsami.7b15762 |
[70] |
CHEN D, WANG W, YING W, et al. CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid[J]. Journal of Materials Chemistry A, 2018, 6(34):16566-16573.
doi: 10.1039/C8TA04753G |
[71] |
YING W, CAI J, ZHOU K, et al. Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane[J]. ACS Nano, 2018, 12(6):5385-5393.
doi: 10.1021/acsnano.8b00367 |
[72] | YING W, HAN B, LIN H, et al. Laminated mica nanosheets supported ionic liquid membrane for CO2 separation[J]. Nanotechnology, 2019, 30(38):38570. |
[73] |
POLAT H M, ZEESHAN M, UZUN A, et al. Unlocking CO2 separation performance of ionic liquid/CuBTC composites: Combining experiments with molecular simulations[J]. Chemical Engineering Journal, 2019, 373:1179-1189.
doi: 10.1016/j.cej.2019.05.113 |
[74] |
KARUNAKARAN M, VILLALOBOS L F, KUMAR M, et al. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture[J]. Journal of Materials Chemistry A, 2017, 5(2):649-656.
doi: 10.1039/C6TA08858A |
[75] |
ABDELRAHIM M Y M, MARTINS C F, NEVES L A, et al. Supported ionic liquid membranes immobilized with carbonic anhydrases for CO2 transport at high temperatures[J]. Journal of Membrane Science, 2017, 528:225-230.
doi: 10.1016/j.memsci.2017.01.033 |
[76] |
FU Y, JIANG Y B, DUNPHY D, et al. Ultra-thin enzymatic liquid membrane for CO2 separation and capture[J]. Nature Communications, 2018, 9(1):1-12.
doi: 10.1038/s41467-017-02088-w |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[3] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[4] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[5] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[6] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[7] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[8] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[9] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[10] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[11] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[12] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[13] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[14] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[15] | WANG Yunyun, MA Zhicheng, ZHOU Qiang, DONG Haiying. Robust optimal scheduling of multi-energy cooperative game considering fairness [J]. Integrated Intelligent Energy, 2023, 45(2): 10-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||