Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (6): 70-77.doi: 10.3969/j.issn.2097-0706.2022.06.008
• Integrated Energy System • Previous Articles Next Articles
ZHOU Liying1(), WANG Yurong2(
), WANG Qingyan1(
)
Received:
2022-03-01
Revised:
2022-05-02
Published:
2022-06-25
CLC Number:
ZHOU Liying, WANG Yurong, WANG Qingyan. Interleaved high step-down DC/DC converter for hydrogen production based on coupling inductor[J]. Integrated Intelligent Energy, 2022, 44(6): 70-77.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.06.008
[1] | 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2):146-152. |
YU Hongmei, SHAO Zhigang, HOU Ming, et al. Research progress and development suggestions of hydrogen production technology from electrolytic water[J]. Strategic Study of CAE, 2021, 23(2):146-152. | |
[2] | 杨勤, 刘建国, 张晨佳, 等. 高温固体氧化物电解水制氢系统效率分析[J]. 电力电子技术, 2020, 54(12):28-31,36. |
YANG Qin, LIU Jianguo, ZHANG Chenjia, et al. Efficiency analysis of hydrogen production system by electrolyzing water with high temperature solid oxide[J]. Power Electronics, 2020, 54(12):28-31,36. | |
[3] | 于方艳, 蒋伟, 王文, 等. 光伏制氢系统电力变换器研究[J]. 电工电气, 2012(10):8-10,20. |
YU Fangyan, JIANG Wei, WANG Wen, et al. Research on power converter of photovoltaic hydrogen production system[J]. Electrotechnics Electric, 2012,(10):8-10,20. | |
[4] | 谷雨. DC/DC变换器直流耦合光伏制氢方法探讨[J]. 科学技术创新, 2021(15):165-167. |
GU Yu. Discussion on DC coupling photovoltaic hydrogen production method of DC/DC converter[J]. Scientific and Technological Innovation, 2021(15):165-167. | |
[5] | 姚雨迎, 张东来, 徐殿国. 级联式DC/DC变换器输出阻抗的优化设计与稳定性[J]. 电工技术学报, 2009, 24(3):147-152. |
YAO Yuying, ZHANG Donglai, XU Dianguo. Optimal design and stability of output impedance of cascaded DC/DC converter[J]. Journal of Electrotechnics, 2009, 24(3):147-152. | |
[6] | CHONSATIDJAMROEN S, AREERAK K N, AREERAK K L. The optimal cascade pi controller design of buck converters[C]// 2012 9th International Conference on Electrical Engineering/Electronics,Computer,Telecommunications and Information Technology.IEEE, 2012:1-4. |
[7] |
HWU K I, JIANG W Z, YAU Y T. Ultrahigh step-down converter[J]. Power Electronics IEEE Transactions on, 2015, 30(6):3262-3274.
doi: 10.1109/TPEL.2014.2338080 |
[8] | ZHAO X, YEH C S, ZHANG L, et al. A high-frequency high-step-down converter with coupled inductor for low power applications[C]// 2017 IEEE Applied Power Electronics Conference and Exposition(APEC), 2017. |
[9] |
KHALILI S, FARZANEHFARD H, ESTEKI M. High step-down DC-DC converter with low voltage stress and wide soft-switching range[J]. IET Power Electronics, 2020, 13(14):3001-3008.
doi: 10.1049/iet-pel.2019.1577 |
[10] |
CHESHMDEHMAM D, ADIB E, FARZANEHFARD H. Soft-switched nonisolated high step-down converter[J]. IEEE Transactions on Industrial Electronics, 2018, 66 (1):183-190.
doi: 10.1109/TIE.2018.2829471 |
[11] |
HAJIHEIDARI M, FARZANEHFARD H, ESTEKI M. Asymmetric ZVS buck converters with high-step-down conversion ratio[J]. IEEE Transactions on Industrial Electronics, 2020, 68(9):7957-7964.
doi: 10.1109/TIE.2020.3013538 |
[12] |
BISWAS M, MAJHI S, NEMADE H B. Two-phase high efficiency interleaved buck converter with improved step-down conversion ratio and low voltage stress[J]. IET Power Electronics, 2019, 12(15):3942-3952.
doi: 10.1049/iet-pel.2019.0547 |
[13] |
CHEN P H, CHENG H C, CHEN P H. A fully integrated step-down switched-capacitor DC-DC converter with dual output regulation mechanisms[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(9):1649-1653.
doi: 10.1109/TCSII.2020.3008972 |
[14] |
CORNEA O, DAN H, MUNTEAN N. Step-down switched-inductor hybrid DC-DC converter for small power wind energy conversion systems with hybrid storage[J]. IEEE Access, 2020, 8:136092-136107.
doi: 10.1109/ACCESS.2020.3012029 |
[15] |
KARTHIKEYAN V, SUNDARAMOORTHY K, KUMAR G. Regenerative switched-inductor/capacitor type DC-DC converter with large voltage gain for PV applications[J]. IET Power Electronics, 2020, 13(1):68-77.
doi: 10.1049/iet-pel.2019.0408 |
[16] |
LEE I O, CHO S Y, MOON G W. Interleaved buck converter having low switching losses and improved step-down conversion ratio[J]. IEEE Transactions on Power Electronics, 2012, 27(8):3664-3675.
doi: 10.1109/TPEL.2012.2185515 |
[17] | 刘俊峰, 胡仁俊, 曾君. 一种非隔离交错工作的高降压比DC-DC功率变换器[J]. 电工技术学报, 2018, 33(20):4763-4770. |
LIU Junfeng, HU Renjun, ZENG Jun. A non-isolated interleaved DC-DC power converter with high step-down ratio[J]. Journal of Electrotechnics, 2018, 33(20):4763-4770. | |
[18] |
ESTEKI M, POORALI B, ADIB E, et al. Interleaved buck converter with continuous input current,extremely low output current ripple,low switching losses,and improved step-down conversion ratio[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8):4769-4776.
doi: 10.1109/TIE.2015.2397881 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[3] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[4] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[5] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[6] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[7] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[8] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[9] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[10] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[11] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[12] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[13] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[14] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[15] | WANG Yunyun, MA Zhicheng, ZHOU Qiang, DONG Haiying. Robust optimal scheduling of multi-energy cooperative game considering fairness [J]. Integrated Intelligent Energy, 2023, 45(2): 10-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||