Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (7): 73-80.doi: 10.3969/j.issn.2097-0706.2022.07.009
• Carbon Neutrality and Carbon Peaking System • Previous Articles Next Articles
XIE Dian(), GAO Yajing(
), LU Xinbo(
), LIU Tianyang(
), ZHAO Liang(
), ZHAO Yong(
)
Received:
2022-05-17
Revised:
2022-06-28
Published:
2022-07-25
CLC Number:
XIE Dian, GAO Yajing, LU Xinbo, LIU Tianyang, ZHAO Liang, ZHAO Yong. Research on the implementation path of the transition from dual control on energy consumption to dual control on carbon emission[J]. Integrated Intelligent Energy, 2022, 44(7): 73-80.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.07.009
[1] |
GASBARRO F, IRALDO F, DADDI T. The drivers of multinational enterprises' climate change strategies: A quantitative study on climate-related risks and opportunities[J]. Journal of Cleaner Production, 2017, 160:8-26.
doi: 10.1016/j.jclepro.2017.03.018 |
[2] | United Nations Environment Programme. Emissions gap report 2020[R]. Nairobi:United Nations Environment Programme (UNEP) and UNEP DTU Partnership (UDP), 2020. |
[3] | 喻小宝, 郑丹丹, 杨康, 等. “双碳”目标下能源电力行业的机遇与挑战[J]. 华电技术, 2021, 43(6): 21-32. |
YU Xiaobao, ZHENG Dandan, YANG Kang, et al. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak[J]. Huadian Technology, 2021, 43(6): 21-32. | |
[4] | 白泉. 建设“碳中和”的现代化强国始终要把节能增效放在突出位置[J]. 中国能源, 2021, 43(1):7-16. |
[5] | 吴滨, 高洪玮. 能耗“双控”政策的碳减排效应分析[J]. 中国能源, 2021, 43(6): 39-45. |
[6] | 谷宇辰, 张达, 张希良. 关于完善能源消费“双控”制度的思考与建议——基于“十三五”能源消费变化的研究[J]. 中国能源, 2020, 42(9): 4-9.. |
[7] | 王兵, 赖培浩, 杜敏哲. 用能权交易制度能否实现能耗总量和强度“双控”?[J]. 中国人口·资源与环境, 2019, 29(1): 107-117. |
WANG Bing, LAI Peihao, DU Minzhe. Whether the energy-consuming right transaction system can achieve the dual control of both energy consumption and intensity?[J]. China Population, Resources and Environment, 2019, 29(1): 107-117. | |
[8] | 张中华, 赵玉焕, SU Bin, 等. 能源需求与碳排放驱动因素分解模型发展评述[J]. 生态经济, 2019, 35(4):13-19. |
ZHANG Zhonghua, ZHAO Yuhuan, SU Bin, et al. Review on the development analysis of driving factors applied on energy demand and carbon emission[J]. Ecological Economy, 2019, 35 (4): 13-19. | |
[9] | 王利兵, 张赟. 中国能源碳排放因素分解与情景预测[J]. 电力建设, 2021, 42(9): 1-9. |
WANG Libing, ZHANG Yun. Factors decomposition and scenario prediction of energy-related CO2 emissions in China[J]. Electric Power Construction, 2021, 42(9): 1-9. | |
[10] |
QI T, WENG Y Y, ZHANG X L, et al. An analysis of the driving factors of energy-related CO2 emission reduction in China from 2005 to 2013[J]. Energy Economics, 2016, 60:15-22.
doi: 10.1016/j.eneco.2016.09.014 |
[11] | 彭武元, 姚烺亭. 中国分行业终端能源消费CO2排放分解研究[J]. 生态经济, 2021, 37(8): 21-27. |
PENG Wuyuan, YAO Langting. Decomposition of China's industrial CO2 emissions from final energy consumption[J]. Ecological Economy, 2021, 37(8): 21-27. | |
[12] |
LIN B Q, LONG H Y. Emissions reduction in China's chemical industry-based on LMDI[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1348-1355.
doi: 10.1016/j.rser.2015.09.045 |
[13] |
SHAO S, LIU J H, GENG Y, et al. Uncovering driving factors of carbon emissions from China's mining sector[J]. Applied Energy, 2016, 166: 220-238.
doi: 10.1016/j.apenergy.2016.01.047 |
[14] |
FATIMA T, XIA E J, CAO Z, et al. Decomposition analysis of energy-related CO2 emission in the industrial sector of China: Evidence from the LMDI approach[J]. Environmental Science and Pollution Research, 2019, 26(21):21736-21749.
doi: 10.1007/s11356-019-05468-5 |
[15] | 国家发展改革委, 国家能源局. 关于印发《“十四五”现代能源体系规划》的通知(发改能源〔2022〕210号)[EB/OL].(2022-01-29)[2022-03-25]. https://www.ndrc.gov.cn/xwdt/tzgg/202203/t20220322_1320017.html?code=&state=. |
[16] | 张俊锋, 许文娟, 王跃锜, 等. 面向碳中和的中国碳排放现状调查与分析[J]. 华电技术, 2021, 43(10): 1-10. |
ZHANG Junfeng, XU Wenjuan, WANG Yueqi, et al. Investigation and analysis on carbon emission status in China on the path to carbon neutrality[J]. Huadian Technology, 2021, 43(10): 1-10. | |
[17] | 刘亦文, 阳超, 蔡宏宇. 中国碳排放总量与强度的省际差异与因素分解[J]. 湖南工业大学学报, 2022, 36(1): 1-9. |
LIU Yiwen, YANG Chao, CAI Hongyu. Inter-provincial diversity and factor decomposition of the totality and intensity of carbon emissions in China[J]. Journal of Hunan University of Technology, 2022, 36(1): 1-9. | |
[18] | 王勇, 程瑜, 杨光春, 等. 2020和2030年碳强度目标约束下中国碳排放权的省区分解[J]. 中国环境科学, 2018, 38(8): 3180-3188. |
WANG Yong, CHENG Yu, YANG Guangchun, et al. Provincial decomposition of China's carbon emission rights under the constraint of 2020 and 2030 carbon intensity targets[J]. China Environmental Science, 2018, 38(8): 3180-3188. | |
[19] | 王勇, 王颖. 中国实现碳减排双控目标的可行性及最优路径能源结构优化的视角[J]. 中国环境科学, 2019, 39(10): 4444-4455. |
WANG Yong, WANG Ying. Feasibility and optimal pathway of China's double targets for carbon reduction—The perspective of energy structure optimization[J]. China Environmental Science, 2019, 39(10): 4444-4455. | |
[20] | 谢伏瞻, 庄国泰, 巢清尘, 等. 应对气候变化报告2021:碳达峰碳中和专辑[M]. 北京: 社会科学文献出版社, 2021. |
[21] | 张贤, 李凯, 马乔, 等. 碳中和目标下CCUS技术发展定位与展望[J]. 中国人口·资源与环境, 2021, 31(9): 29-33. |
ZHANG Xian, LI Kai, MA Qiao, et al. Orientation and prospect of CCUS development under carbon neutrality target[J]. China Population, Resources And Environment, 2021, 31(9): 29-33. | |
[22] | 米剑锋, 马晓芳. 中国CCUS技术发展趋势分析[J]. 中国电机工程学报, 2019, 39(9): 2537-2544. |
MI Jianfeng, MA Xiaofang. Development trend analysis of carbon capture, utilization and storage technology in China[J]. Proceedings of the CSEE, 2019, 39(9): 2537-2544. | |
[23] | 樊静丽, 李佳, 晏水平, 等. 我国生物质能-碳捕集与封存技术应用潜力分析[J]. 热力发电, 2021, 50(1): 7-17. |
FAN Jingli, LI Jia, YAN Shuiping, et al. Application potential analysis for bioenergy carbon capture and storage technology in China[J]. Thermal Power Generation, 2021, 50(1): 7-17. | |
[24] | 鲁军辉, 王随林, 唐进京, 等. 可再生能源与余热协同辅助碳捕集技术研究现状与展望[J]. 华电技术, 2021, 43(11): 97-109. |
LU Junhui, WANG Suilin, TANG Jinjing, et al. Review and prospects of carbon capture technology assisted by renewable energy, waste heat and combination of them[J]. Huadian Technology, 2021, 43(11): 97-109. | |
[25] | 陈全喜, 付江涛. 市政污泥耦合燃煤电厂发电关键因素分析与展望[J]. 华电技术, 2021, 43(10): 50-60. |
CHEN Quanxi, FU Jiangtao. Analysis and prospect of key factors affecting the coupling of municipal sludge combustion and coal-fired power plants[J]. Huadian Technology, 2021, 43(10): 50-60. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[3] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[4] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[5] | TENG Jialun, LI Hongzhong. Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality [J]. Integrated Intelligent Energy, 2023, 45(8): 53-63. |
[6] | HU Kaiyong, LIU Feng, WU Xiujie, HU Yunqing, ZHENG Yi, TIAN Shen. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction [J]. Integrated Intelligent Energy, 2023, 45(8): 64-71. |
[7] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[8] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[9] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[10] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[11] | LIU Ziqi, SU Tingting, HE Jiayang, WANG Yu. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 9-16. |
[12] | ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors [J]. Integrated Intelligent Energy, 2023, 45(5): 1-12. |
[13] | FAN Dekai, FU Jie, LIU Yang, ZHOU Chunbao, DAI Jianjun. Review on the preparation of high-value chemicals from cellulose pyrolysis [J]. Integrated Intelligent Energy, 2023, 45(5): 24-31. |
[14] | LI Minxia, HOU Beiran, WANG Pai, DONG Liwei, TIAN Hua. Application and development of CO2 transcritical cycle heat pumps [J]. Integrated Intelligent Energy, 2023, 45(4): 12-18. |
[15] | WANG Yunyun, MA Zhicheng, ZHOU Qiang, DONG Haiying. Robust optimal scheduling of multi-energy cooperative game considering fairness [J]. Integrated Intelligent Energy, 2023, 45(2): 10-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||