Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (10): 83-90.doi: 10.3969/j.issn.2097-0706.2022.10.011
• Energy Management and Economic Analysis • Previous Articles
Received:
2022-07-01
Revised:
2022-09-24
Published:
2022-10-25
Contact:
FANG Fang
E-mail:yizhang@ncepu.edu.cn;ffang@ncepu.edu.cn
CLC Number:
ZHANG Yi, FANG Fang. Smart building energy management strategy based on stochastic model predictive control[J]. Integrated Intelligent Energy, 2022, 44(10): 83-90.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.10.011
[1] | 中国建筑节能协会能耗专委会. 中国建筑能耗研究报告(2020)成果发布[Z]. 2020. |
[2] |
张爱平, 赵利兴, 刘静. 楼宇型综合能源服务系统智能优化运行研究[J]. 综合智慧能源, 2022, 44(2):42-48.
doi: 10.3969/j.issn.2097-0706.2022.02.007 |
ZHANG Aiping, ZHAO Lixing, LIU Jing. Research on optimized operation of building-type integrated energy service systems[J]. Integrated Intelligent Energy, 2022, 44(2):42-48.
doi: 10.3969/j.issn.2097-0706.2022.02.007 |
|
[3] |
HU M, XIAO F, JORGENSEN J B, et al. Price-responsive model predictive control of floor heating systems for demand response using building thermal mass[J]. Applied Thermal Engineering, 2019, 153:316-329.
doi: 10.1016/j.applthermaleng.2019.02.107 |
[4] | 陈厚合, 李泽宁, 姜涛, 等. 基于模型预测控制的智能楼宇用能灵活性调控策略[J]. 电力系统自动化, 2019, 43(16):116-124. |
CHEN Houhe, LI Zening, JIANG Tao, et al. Flexible energy scheduling strategy in smart buildings based on model predictive control[J]. Automation of Electric Power Systems, 2019, 43(16):116-124. | |
[5] |
AFRAM A, JANABI F. Gray-box modeling and validation of residential HVAC system for control system design[J]. Applied Energy, 2015, 137:134-150.
doi: 10.1016/j.apenergy.2014.10.026 |
[6] |
FINCK C, LI R, ZEILER W. Identification of a dynamic system model for a building and heating system including heat pump and thermal energy storage[J]. MethodsX, 2020, 7:100866.
doi: 10.1016/j.mex.2020.100866 |
[7] |
SEAL S, BOULET B, DEHKORDI V. Centralized model predictive control strategy for thermal comfort and residential energy management[J]. Energy, 2020, 212: 118456.
doi: 10.1016/j.energy.2020.118456 |
[8] |
WEMHOFF A. Calibration of HVAC equipment PID coefficients for energy conservation[J]. Energy and Buildings, 2012, 45:60-66.
doi: 10.1016/j.enbuild.2011.10.021 |
[9] | 吕红丽, 段培永, 崔玉珍, 等. 新型模糊PID控制及在HVAC系统的应用[J]. 控制理论与应用, 2009, 26(11):1277-1281. |
LV Hongli, DUAN Peiyong, CUI Yuzhen, et al. Novel fuzzy PID control and application to HVAC systems[J]. Control Theory & Applications, 2009, 26(11):1277-1281. | |
[10] |
ANDERSON M, BUEHNER M, YOUNG P, et al. MIMO robust control for HVAC systems[J]. IEEE Transactions on Control Systems Technology, 2008, 16(3):475-483.
doi: 10.1109/TCST.2007.903392 |
[11] | 王旭东, 吴莉萍, 戚艳, 等. 基于模型预测控制的智能楼宇暖通空调能量管理策略[J]. 电力系统及其自动化学报, 2019, 31(6):98-106. |
WANG Xudong, WU Liping, QI Yan, et al. Energy management strategy for heating,ventilation and air conditioning in smart building based on model predictive control[J]. Proceedings of the CSU-EPSA, 2019, 31(6):98-106. | |
[12] |
刘静, 史梦鸽, 胡永锋. 含电池储能系统的智能楼宇多阶段能量管理策略[J]. 综合智慧能源, 2022, 44(3):29-37.
doi: 10.3969/j.issn.2097-0706.2022.03.005 |
LIU Jing, SHI Mengge, HU Yongfeng. Multi-stage energy management strategy for smart buildings with BESS[J]. Integrated Intelligent Energy, 2022, 44(3):29-37.
doi: 10.3969/j.issn.2097-0706.2022.03.005 |
|
[13] |
WANG J, LI S, CHEN H, et al. Data-driven model predictive control for building climate control:Three case studies on different buildings[J]. Building and Environment, 2019, 160:106204.
doi: 10.1016/j.buildenv.2019.106204 |
[14] |
YAMASHITA D Y, VECHEIU I, PGAUBERT J. Two-level hierarchical model predictive control with an optimised cost function for energy management in building microgrids[J]. Applied Energy, 2021, 285:116420.
doi: 10.1016/j.apenergy.2020.116420 |
[15] |
KUBOTH S, HEBERLE F, KONIG A, et al. Economic model predictive control of combined thermal and electric residential building energy systems[J]. Applied Energy, 2019, 240:372-385.
doi: 10.1016/j.apenergy.2019.01.097 |
[16] |
OLDEWURTEL F, JONES C N, PARISIO A, et al. stochastic model predictive control for building climate control[J]. IEEE Transactions on Control Systems Technology, 2014, 22(3):1198-1205.
doi: 10.1109/TCST.2013.2272178 |
[17] | OSTADIJAFARI M, DUBEY A, LIU Y, et al. Smart building energy management using nonlinear economic model predictive control[C]//2019 IEEE Power & Energy Society General Meeting(PESGM). Atlanta:IEEE, 2019. |
[18] | 谢澜涛, 谢磊, 苏宏业. 不确定系统的鲁棒与随机模型预测控制算法比较研究[J]. 自动化学报, 2017, 43(6):969-992. |
XIE Lantao, XIE Lei, SU Hongye. A comparative study on algorithms of robust and stochastic mpc for uncertain systems[J]. Acta Automatica Sinica, 2017, 43(6):969-992. | |
[19] |
曹子飞, 杨栋, 吴茂坤, 等. 控制器参数对AGC调节性能的影响[J]. 综合智慧能源, 2022, 44(4):36-42.
doi: 10.3969/j.issn.2097-0706.2022.04.005 |
CAO Zifeng, YANG Dong, WU Maokun, et al. Influence of controller parameters on AGC regulation performance[J]. Integrated Intelligent Energy, 2022, 44(4): 36-42.
doi: 10.3969/j.issn.2097-0706.2022.04.005 |
|
[20] | 荆立坤, 唐宜强, 潘凤萍, 等. 基于鲁棒约束的PI控制器参数多目标优化及应用[J]. 华电技术, 2021, 43(5):1-8. |
JING Likun, TANG Yiqiang, PAN Fengping, et al. Multi-objective optimization of PI controller parameters under robustness constraint and its application[J]. Huadian Technology, 2021, 43(5):1-8. | |
[21] | PIPPIA T, LAGO J, CONINCK R D, et al. Scenario-based nonlinear model predictive control for building heating systems[J]. Energy & Buildings, 2021, 247:111108. |
[22] | Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality,thermal environment,lighting and acoustics: NF E51-762-2007[S]. |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[3] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[4] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[5] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[6] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[7] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[8] | LI Feifei, XU Huiwei, WANG Shuhong, CUI Jindong. Measurement analysis on carbon emissions from agriculture industry in Jilin province and the influencing factors [J]. Integrated Intelligent Energy, 2023, 45(8): 36-43. |
[9] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[10] | LI Fangyi, LI Nan, ZHOU Yan, XIE Wu. Prediction on the regional carbon emission factor for power generation based on multi-dimensional data and deep learning [J]. Integrated Intelligent Energy, 2023, 45(8): 11-17. |
[11] | YAN Limei, HU Wenshuo. Carbon flow tracking method of power systems based on the complex power distribution matrix [J]. Integrated Intelligent Energy, 2023, 45(8): 1-10. |
[12] | WANG Yunyun, MA Zhicheng, ZHOU Qiang, DONG Haiying. Robust optimal scheduling of multi-energy cooperative game considering fairness [J]. Integrated Intelligent Energy, 2023, 45(2): 10-21. |
[13] | DU Yuze, DONG Haiying. Research on the source-load-storage collaborative scheduling strategy for new energy accommodation based on Stackelberg game [J]. Integrated Intelligent Energy, 2023, 45(11): 1-9. |
[14] | WANG Kaiting, LI Xiaobin, ZHANG Hongna, LIU Shen, QU Kaiyang, LI Fengchen. Comprehensive evaluation for energy saving and emission reduction performance of turbulent drag reducing agent in heating systems [J]. Integrated Intelligent Energy, 2022, 44(9): 40-50. |
[15] | JIANG Ting, ZHAO Yajiao. Carbon emission reduction analysis for gas-based distributed integrated energy systems [J]. Integrated Intelligent Energy, 2022, 44(9): 27-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||