Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (11): 29-37.doi: 10.3969/j.issn.2097-0706.2024.11.004
• Maintanence and Inspection based on AI • Previous Articles Next Articles
ZHANG Wenqiang1,2(), LI Jiashu1,2, XUAN Yang1,2,*(
), LI Chen1,2, QIAN Hang1,2, ZHANG Xiaoyu1,2
Received:
2024-08-05
Revised:
2024-09-05
Published:
2024-11-25
Contact:
XUAN Yang
E-mail:wa2224079@stu.ahu.edu.cn;wa22301056@stu.ahu.edu.cn
Supported by:
CLC Number:
ZHANG Wenqiang, LI Jiashu, XUAN Yang, LI Chen, QIAN Hang, ZHANG Xiaoyu. Defect detection method of PV panels based on multi-scale fusion and improved YOLOv8n[J]. Integrated Intelligent Energy, 2024, 46(11): 29-37.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.11.004
Table 3
Comparison experiment results
模型 | 参数量/106 | 计算量/GFLOPs | 准确率/% | 召回率/% | F2值 | mAP0.5/% |
---|---|---|---|---|---|---|
文献[25] | 4.2 | 18.1 | 85.9 | 82.3 | 0.841 | 88.1 |
文献[26] | 13.3 | 31.6 | 88.6 | 86.1 | 0.873 | 88.4 |
Faster RCNN | 137.1 | 370.2 | 39.3 | 88.3 | 0.544 | 65.2 |
YOLOv3 | 61.5 | 155.3 | 85.6 | 88.6 | 0.871 | 89.7 |
YOLOv5m | 21.1 | 25.2 | 86.4 | 87.2 | 0.868 | 89.3 |
YOLOv7 | 37.2 | 150.1 | 87.8 | 79.1 | 0.832 | 85.7 |
YOLOv9m | 32.6 | 130.7 | 85.1 | 89.2 | 0.871 | 90.2 |
YOLOv10m | 16.5 | 64.0 | 84.9 | 85.0 | 0.849 | 88.6 |
本文 | 2.5 | 11.7 | 93.0 | 83.8 | 0.882 | 91.9 |
[1] | 舒印彪, 赵勇, 赵良, 等. “双碳”目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5):1663-1672. |
SHU Yinbiao, ZHAO Yong, ZHAO Liang, et al. Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5):1663-1672. | |
[2] | 国家能源局. 2024年上半年光伏发电建设情况[J]. 电力科技与环保, 2021, 31(4):46. |
National Energy Administration. Photovoltaic power generation construction in the first half of 2024[J]. Electric Power Technology and Environmental Protection, 2021, 31(4):46. | |
[3] | AKRAM M W, LI G, JIN Y, et al. Failures of photovoltaic modules and their detection:A review[J]. Applied Energy, 2022, 313:118822. |
[4] | KANDEAL A W, ELKADEEM M R, THAKUR A K, et al. Infrared thermography-based condition monitoring of solar photovoltaic systems:A mini review of recent advances[J]. Solar Energy, 2021, 223:33-43. |
[5] | ET-TALEBY A, CHAIBI Y, BOUSSETTA M, et al. A novel fault detection technique for PV systems based on the K-means algorithm,coded wireless orthogonal frequency division multiplexing and thermal image processing techniques[J]. Solar Energy, 2022, 237:365-376. |
[6] | ALI M U, KHAN H F, MASUD M, et al. A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography[J]. Solar Energy, 2020, 208: 643-651. |
[7] | SU B Y, CHEN H Y, CHEN P, et al. Deep learning-based solar-cell manufacturing defect detection with complementary attention network[J]. IEEE Transactions on Industrial informatics, 2020, 17(6):4084-4095. |
[8] | HERRAIZ Á H MARUGÁN A P, MÁRQUEZ F P G. Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure[J]. Renewable Energy, 2020, 153:334-348. |
[9] | 季瑞瑞, 梅远, 杨思凡, 等. 基于改进Faster R-CNN的光伏组件红外热斑检测算法[J]. 激光与红外, 2024, 54(4):584-592. |
JI Ruirui, MEI Yuan, YANG Sifan, et al. Infrared hot spot detection in photovoltaic modules based on improved Faster R-CNN[J]. Laser & Infrared, 2024, 54(4):584-592. | |
[10] | WANG J, ZHANG R Z, ZHENG X. Photovoltaic panel intelligent detection method based on improved Faster-RCNN[C]// 2023 IEEE 3rd International Conference on Electronic Technology,Communication and Information (ICETCI).IEEE, 2023:1565-1569. |
[11] | TRIPATHY S, SATPATHY M. SSD internal cache management policies:A survey[J]. Journal of Systems Architecture, 2022, 122:102334. |
[12] | HUSSAIN M. YOLOv1 to v8:Unveiling each varianta comprehensive review of YOLO[J]. IEEE Access, 2024, 12:42816-42833. |
[13] | XU M. Solar cell defect detection based on improved G-SSD network[J]. International Journal of Energy, 2023, 2(1):68-71. |
[14] | 艾上美, 周剑峰, 张必朝, 等. 基于改进SSD算法的光伏组件缺陷检测研究[J]. 智慧电力, 2023, 51(12):53-58. |
AI Shangme, ZHOU Jianfeng, ZHANG Bicha, et al. Defect detection of photovoltaic modules based on improved SSD algorithm[J]. Smart Power, 2023, 51(12):53-58. | |
[15] | DITOMMASO A, BETTI A, FONTANELLI G, et al. A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle[J]. Renewable energy, 2022, 193:941-962. |
[16] | LI L L, WANG Z F, ZHANG T T. GBH-YOLOv5:Ghost convolution with bottleneck and tiny target prediction head incorporating YOLOv5 for PV panel defect detection[J]. Electronics, 2023, 12(3):561. |
[17] | ZHANG J L, YANG W, CHEN Y, et al. Fast object detection of anomaly photovoltaic (PV) cells using deep neural networks[J]. Applied Energy, 2024, 372:123759. |
[18] | CAO Y K, PANG D D, ZHAO Q C, et al. Improved YOLOv8-GD deep learning model for defect detection in electroluminescence images of solar photovoltaic modules[J]. Engineering Applications of Artificial Intelligence, 2024, 131:107866. |
[19] | HANG X Y, ZHU X B, GAO X X, et al. Study on crack monitoring method of wind turbine blade based on AI model:Integration of classification,detection,segmentation and fault level evaluation[J]. Renewable Energy, 2024, 224: 120152. |
[20] | HAN K, WANG Y H, TIAN Q, et al. Ghostnet:More features from cheap operations[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020:1580-1589. |
[21] | XU W, WAN Y. ELA:Efficient local attention for deep convolutional neural networks[J]. Arxiv Preprint Arxiv, 2024:2403.01123. |
[22] | WANG H, LI D, ISSHIKI T. Energy-efficient implementation of YOLOv8,instance segmentation,and pose detection on RISC-V SoC[J]. IEEE Access, 2024, 12:64050-64068. |
[23] | TAN M M, PANG R M, LE Q V. Efficientdet:Scalable and efficient object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:10781-10790. |
[24] |
任一鸣, 杜董生, 邓祥帅, 等. 基于Real-ESRGAN和改进YOLOv8n的输电线路绝缘子故障检测[J]. 综合智慧能源, 2024, 46(7):29-39.
doi: 10.3969/j.issn.2097-0706.2024.07.004 |
REN Yiming, DU Dongsheng, DENG Xiangshuai, et al. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning[J]. Integrated Intelligent Energy, 2024, 46(7):29-39.
doi: 10.3969/j.issn.2097-0706.2024.07.004 |
|
[25] | 郭岚, 刘正新. 基于改进YOLOv5的光伏组件缺陷检测[J]. 激光与光电子学进展, 2023, 60(20):148-156. |
GUO Lan, LIU Zhengxin. Improved YOLOv5-based defect detection in photovoltaic modules[J]. Laser &Optoelectronics Progress, 2023, 60(20):148-156. | |
[26] |
田浩, 周强, 贺晨龙. 基于多尺度特征融合的光伏组件缺陷检测[J]. 计算机工程与应用, 2024, 60(3):340-347.
doi: 10.3778/j.issn.1002-8331.2304-0390 |
TIAN Hao,ZHOU Qiang,HE Chenlong. Defect detection of photovoltaic modules based on multi-scale feature fusion[J]. Computer Engineering and Applications, 2024, 60(3):340-347.
doi: 10.3778/j.issn.1002-8331.2304-0390 |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | ZHU Weiwei, ZHU Qing, GAO Wensen, LIU Caihua, WANG Luze, LIU Zengji. Switching method for distribution network feeder automation system based on 5G communication delay [J]. Integrated Intelligent Energy, 2024, 46(5): 1-11. |
[3] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
[4] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[5] | LYU Yongsheng, ZHANG Xiaoyu, WANG Xirong, GUO Peiqian. Application and prospect of federated learning in new power systems [J]. Integrated Intelligent Energy, 2024, 46(11): 54-64. |
[6] | LI Fangyi, LI Nan, ZHOU Yan, XIE Wu. Prediction on the regional carbon emission factor for power generation based on multi-dimensional data and deep learning [J]. Integrated Intelligent Energy, 2023, 45(8): 11-17. |
[7] | WANG Yonglin, BAI Yongfeng, KONG Xiangshan, HAO Zheng, YANG Pengfei, KONG Dewei. Study on denitration optimization control model based on CNN-LSTM algorithm [J]. Integrated Intelligent Energy, 2023, 45(6): 25-33. |
[8] | FANG Rui, DUAN Zhiyong, LIU Zaizhi, WANG Yuxuan, LIU Chenxi, LI Hao, FAN Chuigang. Review on marine litter treatment technologies [J]. Integrated Intelligent Energy, 2023, 45(5): 70-79. |
[9] | LIN Honghong, YU Tao, ZHANG Guiyuan, ZHANG Xiaoshun. Data-driven reactive power optimization algorithm for the distribution network with high proportion of renewable energy [J]. Integrated Intelligent Energy, 2023, 45(11): 10-19. |
[10] | DONG Weijie, CUI Quansheng, HAO Lanxin, WANG Yilong, LIU Guolin. Study on orderly charging strategy of electric vehicles in residential areas [J]. Integrated Intelligent Energy, 2023, 45(1): 82-87. |
[11] | LI Huijun, LU Jianqiang, ZHOU Xia, XIE Xiangpeng, WAN Lei. Network attack association analysis and attack protection strategy for smart park systems [J]. Integrated Intelligent Energy, 2022, 44(7): 1-9. |
[12] | LIU Wenhui, YAN Bowen, WU Jiang, REN Yijun, KONG Weizheng, CHEN Jiyu. Intelligent prediction model of CFB boiler bed temperature based on parallel control theory [J]. Integrated Intelligent Energy, 2022, 44(3): 50-57. |
[13] | YAN Xinchun, CAO Huan, HUA Yunpeng. Prediction on tube wall temperatures of boiler heating surfaces based on artificial intelligence [J]. Integrated Intelligent Energy, 2022, 44(3): 58-62. |
[14] | CUI Shuangshuang, SUN Shanxun. Study on the correlation of wind turbine variables under different conditions [J]. Integrated Intelligent Energy, 2022, 44(12): 49-55. |
[15] | SU Xiaoling, YANG Jun, GAN Jiatian, LI Zhengxi, SI Yang, GAO Mengyu. Engineering test system for the performance of a new type photovoltaic inverter involved in power grid [J]. Huadian Technology, 2021, 43(9): 23-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||