Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (1): 79-87.doi: 10.3969/j.issn.2097-0706.2025.01.010
• VPP Modeling and Integrating • Previous Articles
HU Jiea(), ZHAN Qiaoronga(
), TIAN Deshuob(
), LI Wenweia(
)
Received:
2024-08-16
Revised:
2024-09-27
Published:
2025-01-25
Supported by:
CLC Number:
HU Jie, ZHAN Qiaorong, TIAN Deshuo, LI Wenwei. Economic dispatch strategy for virtual power plants considering privacy protection[J]. Integrated Intelligent Energy, 2025, 47(1): 79-87.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.01.010
[1] | HU J, SUN Q Y, WANG R, WANG Y B, ZHAI M N. Privacy-preserving sliding mode control for voltage restoration of AC microgrids based on output mask approach[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 6818-6827. |
[2] | TU H, DU Y, YU H, et al. Distributed economic dispatch for virtual power plant tracking ramp power commands[J]. IEEE Transactions on Smart Grid, 2023, 14(1): 94-111. |
[3] | 秦子恺, 黄婧杰, 周任军, 等. 计及源-荷不确定性的虚拟电厂多目标鲁棒优化调度[J]. 电力系统及其自动化学报, 2023, 35(6): 13-21. |
QIN Zikai, HUANG Jingjie, ZHOU Renjun, et al. Multi-objective robust optimal scheduling of virtual power plant considering source-load uncertainty[J]. Proceedings of the CSU-EPSA, 2023, 35(6): 13-21. | |
[4] | 刘建行, 刘方. 基于深度强化学习的梯级水蓄风光互补系统优化调度策略研究[J]. 广东电力, 2024, 37(5): 10-22. |
LIU Jianhang, LIU Fang. Research on optimized dispatching strategy of cascade hydropower-pumping-storage-wind-photovoltaic multi-energy complementary system based on deep reinforcement learning[J]. Guangdong Electric Power, 2024, 37(5): 10-22. | |
[5] | 林彦旭, 高辉. 基于SSA-VMD-BiLSTM模型的充电站负荷预测方法[J]. 广东电力, 2024, 37(6): 53-61. |
LIN Yanxu, GAO Hui. Load prediction method of charging station based on SSA-VMD-BiLSTM model[J]. Guangdong Electric Power, 2024, 37(6): 53-61. | |
[6] |
孙秋野, 姚葭, 王一帆. 从虚拟电厂到真实电量:虚拟电厂研究综述与展望[J]. 发电技术, 2023, 44(5): 583-601.
doi: 10.12096/j.2096-4528.pgt.23102 |
SUN Qiuye, YAO Jia, WANG Yifan. From virtual power plant to real electricity: Summary and prospect of virtual power plant research[J]. Power Generation Technology, 2023, 44(5): 583-601.
doi: 10.12096/j.2096-4528.pgt.23102 |
|
[7] | HE X, ZHAO Y, HUANG T. Optimizing the dynamic economic dispatch problem by the distributed consensus-based ADMM approach[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3210-3221. |
[8] | 李远征, 倪质先, 段钧韬, 等. 面向高比例新能源电网的重大耗能企业需求响应调度[J]. 自动化学报, 2023, 49(4): 754-768. |
LI Yuanzheng, NI Zhixian, DUAN Juntao, et al. Demand response scheduling of major energy-consuming enterprises based on a high proportion of renewable energy power grid[J]. Acta Automatica Sinica, 2023, 49(4): 754-768. | |
[9] |
郁海彬, 卢闻州, 唐亮, 等. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77.
doi: 10.3969/j.issn.2097-0706.2024.06.008 |
YU Haibin, LU Wenzhou, TANG Liang, et al. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences[J]. Integrated Intelligent Energy, 2024, 46(6): 66-77.
doi: 10.3969/j.issn.2097-0706.2024.06.008 |
|
[10] | YAN Y, CHEN Z, VAIADHARAJAN V, et al. Distributed consensus-based economic dispatch in power grids using the paillier cryptosystem[J]. IEEE Transactions on Smart Grid, 2021, 12 (4): 3493-3502. |
[11] | HU J, SUN Q Y, ZHAI M N, WANG Y B. Privacy preserving consensus strategy for secondary control in microgrids against multi-link false data injection attacks[J]. IEEE Transactions on Industrial Informatics, 2023: 3240878. |
[12] | WANG A J, LIU W P, DONG T, et al. DisEHPPC: Enabling heterogeneous privacy-preserving consensus-based scheme for economic dispatch in smart grids[J]. IEEE Transactions on Cybernetics, 2022, 52(6):5124-5135. |
[13] | MAO S, TANG Y, DONG Z W, et al. A privacy preserving distributed optimization algorithm for economic dispatch over time-varying directed networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1689-1701. |
[14] | REZAZADEH N, KIA S S. Privacy preservation in a continuous-time static average consensus algorithm over directed graphs[C]// 2018 Annual American Control Conference (ACC). 2018: 5890-5895. |
[15] | MA Y, ZHANG W, LIU W X, et al. Fully distributed social welfare optimization with line flow constraint consideration[J]. IEEE Transactions on Industrial Informatics, 2015, 11(6): 1532-1541. |
[16] | QIN J H, WAN Y N, YU X H, et al. Consensus-based distributed coordination between economic dispatch and demand response[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3709-3719. |
[17] | KANCHEV H, LU D, COLAS F, et al. Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4583-4592. |
[18] |
刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6):59-66.
doi: 10.3969/j.issn.2097-0706.2023.06.008 |
LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technology of virtual power plant and its construction practice[J]. Integrated Intelligent Energy, 2023, 45(6):59-65.
doi: 10.3969/j.issn.2097-0706.2023.06.008 |
|
[19] | MO Y L, MURRAY R M. Privacy preserving average consensus[J]. IEEE Transactions on Automatic Control, 2017, 62(2): 753-765. |
[20] | HE J P, CAI L, ZHAO C C, et al. Privacy-preserving average consensus: Privacy analysis and algorithm design[J]. IEEE Transactions on Signal and Information Processing over Networks, 2019, 5(1): 127-138. |
[21] | RUAN M H, GAO H, WANG Y Q. Secure and privacy-preserving consensus[J]. IEEE Transactions on Automatic Control, 2019, 64(10): 4035-4049. |
[22] | YIN T J, LV Y Z, YU W W. Accurate privacy preserving average consensus[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2020, 67(4): 690-694. |
[23] | ZHANG J, LU J Q, CHEN X Y. Privacy-preserving average consensus via edge decomposition[J]. IEEE Control Systems Letters, 2022, 6: 2503-2508. |
[24] | XIONG Y, LI Z K. Privacy-preserved average consensus algorithms with edge-based additive perturbations[J]. Automatic, 2022, 140: 110223. |
[25] | MI Y, DENG J, WANG X, et al. Multi agent distributed secondary control for energy storage systems with lossy communication networks in DC microgrid[J]. IEEE Transactions on Smart Grid, 2023, 14(3): 1736-1749. |
[26] | HU J, SUN Q Y, WANG R, WANG Y H. An improved privacy-preserving cConsensus strategy for AC microgrids based on output mask approach and node decomposition mechanism[J]. IEEE Transactions on Automation Science and Engineering, 2022:3217677. |
[27] | XU L, GUO Q L, WANG Z G, et al. Modeling of time-delayed distributed cyber-physical power systems for small-signal stability analysis[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3425-3437. |
[28] | 厉鹏. 社交网络环境下密文计算与隐私保护关键技术研究[D]. 沈阳: 东北大学, 2021. |
LI Peng. Research on key technology of cipher-text computing and privacy protection in social network environment[D]. Shenyang: Northeastern University, 2021. |
[1] | YUAN Xiaoke, SHEN Shilan, ZHANG Maosong, SHI Chenxu, YANG Lingxiao. Optimal scheduling of intelligent virtual power plants based on explainable reinforcement learning [J]. Integrated Intelligent Energy, 2025, 47(1): 1-9. |
[2] | SU Rui, WANG Xilong, JIANG Yan, SONG Chenhui. Scheduling planning for virtual power plants based on an improved cost allocation method [J]. Integrated Intelligent Energy, 2025, 47(1): 10-17. |
[3] | JIANG Yan, SONG Chenhui, ZHANG Ning, HE Bo, LU Yuting. Study on optimized operation model and strategy for virtual power plants considering multi-energy coupling [J]. Integrated Intelligent Energy, 2025, 47(1): 34-41. |
[4] | HU Jiacheng, ZHANG Ning, CAO Yutong, HU Cungang. Load optimization scheduling decision for virtual power plants with distributed energy accessed [J]. Integrated Intelligent Energy, 2025, 47(1): 62-69. |
[5] | LI Ming, HU Nan, LIU Xinrui. Optimal operation strategy of virtual power plants considering fairness for electric vehicles [J]. Integrated Intelligent Energy, 2025, 47(1): 70-78. |
[6] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[7] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[8] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[9] | LYU Yongsheng, ZHANG Xiaoyu, WANG Xirong, GUO Peiqian. Application and prospect of federated learning in new power systems [J]. Integrated Intelligent Energy, 2024, 46(11): 54-64. |
[10] | LI Mingyang, DONG Zhe. Pricing mechanism and optimal scheduling of virtual power plants containing distributed renewable energy and demand response loads [J]. Integrated Intelligent Energy, 2024, 46(10): 12-17. |
[11] | LI Bin, BAI Xuefeng, LI Zhichao, WANG Shijun, LIU Chun, CHENG Ziyun. Design and prospect of distributed electric heating interactive mode based on federated learning [J]. Integrated Intelligent Energy, 2024, 46(1): 56-64. |
[12] | TIAN Zeyu, SHA Zhaoyang, ZHAO Quanbin, YAN Hui, CHONG Daotong. Research on control strategy for virtual power plants in response to thermostatically controlled loads [J]. Integrated Intelligent Energy, 2024, 46(1): 28-37. |
[13] | XIONG Zhenzhen. Analysis on execution of VPPs for commercial buildings in Shanghai based on decision tree [J]. Integrated Intelligent Energy, 2023, 45(6): 66-72. |
[14] | LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants [J]. Integrated Intelligent Energy, 2023, 45(6): 59-65. |
[15] | DU Yuze, DONG Haiying. Research on the source-load-storage collaborative scheduling strategy for new energy accommodation based on Stackelberg game [J]. Integrated Intelligent Energy, 2023, 45(11): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||