Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (4): 73-84.doi: 10.3969/j.issn.2097-0706.2025.04.006
• Intelligent Power Systems and Control • Previous Articles Next Articles
HUANG Wenxuan(), ZENG Haozheng(
), LIN Yijin(
), YIN Linfei*(
)
Received:
2024-12-24
Revised:
2025-01-15
Published:
2025-04-25
Contact:
YIN Linfei
E-mail:huangwenxuan@st.gxu.edu.cn;2312392004@st.gxu.edu.cn;13105022198@163.com;yinlinfei@gxu.edu.cn
Supported by:
CLC Number:
HUANG Wenxuan, ZENG Haozheng, LIN Yijin, YIN Linfei. Research on the loss of magnetic components based on a data-driven method[J]. Integrated Intelligent Energy, 2025, 47(4): 73-84.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.04.006
Table 1
Evaluation metrics for three algorithms
指标 | GhostNet | EfficientNet | ResNet |
---|---|---|---|
训练集R2 | 0.988 5 | 0.981 2 | 0.425 5 |
测试集R2 | 0.986 5 | 0.922 0 | 0.103 9 |
训练集eMAE | 1.952 2×104 | 2.882 8×104 | 2.190 7×105 |
测试集eMAE | 2.154 9×104 | 4.780 2×104 | 2.722 4×105 |
训练集eMBE | 1.569 6×107 | -8.296 3×103 | -4.961 9×104 |
测试集eMBE | 3.418 2×106 | -1.725 3×104 | -5.542 6×104 |
[1] | 刘任, 袁轩, 刘瑞勇, 等. 高频磁性元件圆形利兹线绕组损耗解析计算模型[J]. 中国电机工程学报, 2023, 43(21): 8511-8518. |
LIU Ren, YUAN Xuan, LIU Ruiyong, et al. Analytical prediction model of round litz wire windings losses of high frequency magnetic components[J]. Proceedings of the CSEE, 2023, 43(21): 8511-8518. | |
[2] | 赵磊, 刘成成, 汪友华. 谐波激励下软磁复合材料磁芯损耗的有限元计算[J]. 兵器材料科学与工程, 2023, 46(3): 13-21. |
ZHAO Lei, LIU Chengcheng, WANG Youhua. Finite element calculation of core loss of soft magnetic composites under harmonic excitation[J]. Ordnance Material Science and Engineering, 2023, 46(3): 13-21. | |
[3] |
王聪, 陈庆彬, 杨丰钢, 等. 无线电能传输磁耦合系统损耗优化[J]. 电源学报, 2023, 21(3): 108-116.
doi: 10.13234/j.issn.2095-2805.2023.3.108 |
WANG Cong, CHEN Qingbin, YANG Fenggang, et al. Loss optimization of magnetic coupling system for WPT[J]. Journal of Power Supply, 2023, 21(3): 108-116.
doi: 10.13234/j.issn.2095-2805.2023.3.108 |
|
[4] | ARRUTI A, ANZOLA J, PÉREZ-CEBOLLA F J, et al. The composite improved generalized steinmetz equation (ciGSE): An accurate model combining the composite waveform hypothesis with classical approaches[J]. IEEE Transactions on Power Electronics, 2024, 39(1): 1162-1173. |
[5] | 中国学位与研究生教育学会. 中国研究生数学建模竞赛[DB/OL].(2024-09-16)[2024-12-10]. https://cpipc.acge.org.cn//cw/detail/4/2c90801791c6c0a80191f9a6b0366533. |
[6] | XU J F, LIU Z Z, HONG G, et al. A new machine-learning-based calibration scheme for MODIS thermal infrared water vapor product using BPNN, GBDT, GRNN, KNN, MLPNN,RF,and XGBoost[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5001412. |
[7] | 闵素芹. 基于梯度提升树的ALE图特征解释效果分析[J]. 统计与决策, 2024, 40(3): 57-62. |
MIN Suqin. Effect analysis of ALE plots feature interpretation based on gradient boosted trees[J]. Statistics & Decision, 2024, 40(3): 57-62. | |
[8] | 杜施默, 陈国军, 陆敏, 等. 应用梯度提升树的小区域无线网络多标签流量预测[J]. 电讯技术, 2022, 62(6): 802-807. |
DU Shimo, CHEN Guojun, LU Min, et al. Multi-label traffic prediction for small area wireless network via gradient boosting tree[J]. Telecommunication Engineering, 2022, 62(6): 802-807. | |
[9] | YU S S, CHU S W, WANG C M, et al. Two improved k-means algorithms[J]. Applied Soft Computing, 2018, 68: 747-755. |
[10] | AY M, ÖZBAKıR L, KULLUK S, et al. FC-Kmeans: Fixed-centered K-means algorithm[J]. Expert Systems with Applications, 2023, 211: 118656. |
[11] | 彭程, 谭冲, 刘洪, 等. 基于BBO优化K-means算法的WSN分簇路由算法[J]. 中国科学院大学学报, 2024, 41(3): 357-364. |
PENG Cheng, TAN Chong, LIU Hong, et al. Clustering routing algorithm for WSN based on BBO optimized K-means[J]. Journal of University of Chinese Academy of Sciences, 2024, 41(3): 357-364. | |
[12] |
马鑫, 段刚龙, 王建仁, 等. 基于改进轮廓系数法的航空公司客户分群研究[J]. 运筹与管理, 2021, 30(1): 140-146.
doi: 10.12005/orms.2021.0020 |
MA Xing, DUAN Ganglong, WANG Jianren, et al. Research on airline customer clustering based on improved silhouette coefficient method[J]. Operaions Research and Management Science, 2021, 30(1): 140-146. | |
[13] | HUANG Q Q, HAN Y, ZHANG X L, et al. FFKD-CGhostNet: A novel lightweight network for fault diagnosis in edge computing scenarios[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3536410. |
[14] | JIN X, XIE Y P, WEI X S, et al. Delving deep into spatial pooling for squeeze-and-excitation networks[J]. Pattern Recognition, 2022, 121: 108159. |
[15] | KULAN M C, BAKER N J, LIOGAS K A, et al. Empirical implementation of the steinmetz equation to compute eddy current loss in soft magnetic composite components[J]. IEEE Access, 2022, 10: 14610-14623. |
[16] |
熊恩杰, 张荣芬, 刘宇红, 等. 面向交通标志的Ghost-YOLOv8检测算法[J]. 计算机工程与应用, 2023, 59(20): 200-207.
doi: 10.3778/j.issn.1002-8331.2306-0032 |
XIONG Enjie, ZHANG Rongfen, LIU Yuhong, et al. Ghost-YOLOv8 detection algorithm for traffic signs[J]. Computer Engineering and Applications, 2023, 59(20): 200-207.
doi: 10.3778/j.issn.1002-8331.2306-0032 |
|
[17] | 张倩如, 王云飞, 吕帅朝, 等. 基于改进GhostNet的小麦秸秆表皮结构完整性分类方法[J]. 南京农业大学学报, 2022, 45(4): 788-798. |
ZHANG Qianru, WANG Yunfei, LÜ Shuaichao, et al. Integrity classification of wheat straw epidermis based on improved GhostNet[J]. Journal of Nanjing Agricultural University, 2022, 45(4): 788-798. | |
[18] |
韩春港, 刘永辉. 基于GhostNet和特征融合的人脸活体检测算法[J]. 计算机应用, 2023, 43(8): 2588-2592.
doi: 10.11772/j.issn.1001-9081.2022071100 |
HAN Chungang, LIU Yonghui. Face liveness detection algorithm based on Ghost Net and feature fusion[J]. Journal of Computer Applications, 2023, 43(8): 2588-2592.
doi: 10.11772/j.issn.1001-9081.2022071100 |
|
[19] | 王文亮, 杨晓迪, 张博雅, 等. 轻量化卷积神经网络在船舶分类中的应用[J]. 激光与光电子学进展, 2023, 60(6): 73-80. |
WANG Wenliang, YANG Xiaodi, ZHANG Boya, et al. Application of a lightweight convolutional neural network in ship classification[J]. Laser & Optoelectronics Progress, 2023, 60(6): 73-80. | |
[20] | 殷林飞, 仝博文, 李雯吉. 基于多尺度卷积-残差网络的短期风电预测[J/OL]. 综合智慧能源,1-10(2024-09-05)[2024-12-10]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240904.1013.002.html. |
YIN Linfei, TONG Bowen, LI Wenji. Multiscale convolution-residual network for short-term wind power forecasting[J/OL]. Integrated Intelligent Energy,1-10(2024-09-05)[2024-12-10]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240904.1013.002.html. | |
[21] |
殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20.
doi: 10.3969/j.issn.2097-0706.2024.07.002 |
YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks[J]. Integrated Intelligent Energy, 2024, 46(7): 12-20..
doi: 10.3969/j.issn.2097-0706.2024.07.002 |
|
[22] | ZHENG Y, WANG D. A survey of recommender systems with mult-objective optimization[J]. Neurocomputing, 2022, 474: 141-153. |
[23] | 常国锋. 基于多目标遗传算法的多配置风电机组控制[J]. 科学技术与工程, 2022, 22(1): 220-227. |
CHANG Guofeng. Multiple configuration wind turbine control based on multi-objective genetic algorithm[J]. Science Technology and Engineering, 2022, 22(1): 220-227. | |
[24] | 叶心, 张腾, 卢金涛, 等. 基于多目标遗传算法的混合动力汽车能量管理优化[J]. 科学技术与工程, 2022, 22(21): 9389-9397. |
YE Xin, ZHANG Teng, LU Jintao, et al. Optimization of hybrid electric vehicle energy management based on multi objective genetic algorithm[J]. Science Technology and Engineering, 2022, 22(21): 9389-9397. | |
[25] | 许伟平. 多目标遗传算法在输变电工程路径规划与环境影响评估中的应用[J]. 电子技术, 2024, 53(12):127-129. |
XU Weiping. Application of multi-objective genetic algorithm in path planning and environmental impact assessment of power transmission and transformation engineering[J]. Electronic Technology, 2024, 53(12):127-129. | |
[26] | CHEN L G, SHI S S, GE Y L, et al. Ecological function performance analysis and multi-objective optimization for an endoreversible four-reservoir chemical pump[J]. Energy, 2023, 282: 128717. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||