Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (9): 1-9.doi: 10.3969/j.issn.2097-0706.2025.09.001
• Mechanisms and Proactive Defense for Power System Resilience • Next Articles
HUANG Zishu1(
), CAI Ye1,*(
), SUN Rongzuo1(
), TAN Yudong2
Received:2024-12-05
Revised:2025-01-15
Published:2025-09-25
Contact:
CAI Ye
E-mail:643783077@qq.com;caiye1988427@126.com;1574259113@qq.com
Supported by:CLC Number:
HUANG Zishu, CAI Ye, SUN Rongzuo, TAN Yudong. Critical section identification and protection configuration for high-risk N-k faults in power systems[J]. Integrated Intelligent Energy, 2025, 47(9): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.09.001
Table 1
Data for chain fault #1 in high-risk N-2 fault set
| 方案 | #6 线路配置参数 | #7 线路配置参数 | #16 线路配置参数 | #17 线路配置参数 | #21 线路配置参数 | #22 线路配置参数 | #24 线路配置参数 | #31 线路配置参数 | 剩余负荷率 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.957 039 598 | 0 | 0 | 0.763 423 436 | 0 | 0 | 0 | 0.246 646 047 | 0.122 |
| 2 | 0 | 0 | 0.416 252 147 | 0 | 0 | 0 | 0 | 0 | 0.203 |
| 3 | 0 | 0.523 962 388 | 0.951 261 251 | 0.943 495 071 | 0.869 435 651 | 0 | 0.321 950 269 | 0.481 167 578 | 1.000 |
Table 2
Data for chain fault #1 in high-risk N-3 fault set
| 方案 | #6 线路配置参数 | #7 线路配置参数 | #12 线路配置参数 | #15 线路配置参数 | #16 线路配置 参数 | #17 线路配置 参数 | #24 线路配置参数 | 剩余负荷率 |
|---|---|---|---|---|---|---|---|---|
| 1 | 0.854 405 488 | 0.156 178 821 | 0.508 089 055 | 0.142 051 600 | 0.186 611 352 | 0.505 783 843 | 0 | 0.805 |
| 2 | 0.738 698 860 | 0.423 310 533 | 0 | 0 | 0.145 289 630 | 0 | 0.735 620 270 | 0.345 |
| 3 | 0.672 234 557 | 0.531 174 209 | 0 | 0.996 951 188 | 0.372 555 411 | 0.864 570 002 | 0.604 754 507 | 0.294 |
Table 3
Comparison of residual load rate under high-risk N-2 faults
| 故障编号 | 配置1条线路 | 配置2条线路 | 配置3条线路 | 配置4条线路 | 配置5条线路 | 配置6条线路 | 未配置时 |
|---|---|---|---|---|---|---|---|
| 1 | 0.547 | 0.805 | 0.805 | 0.999 | 1.000 | 1.000 | 0.202 |
| 2 | 0.828 | 0.828 | 0.928 | 0.954 | 1.000 | 0.484 | |
| 3 | 0.853 | 0.853 | 0.954 | 0.999 | 0.999 | 1.000 | 0.381 |
| 4 | 0.805 | 0.807 | 0.999 | 1.000 | 1.000 | 1.000 | 0.603 |
| 5 | 0.804 | 0.807 | 0.807 | 0.807 | 0.807 | 0.808 | 0.603 |
| 6 | 0.619 | 0.795 | 0.919 | 0.999 | 0.999 | 1.000 | 0.248 |
| 7 | 0.835 | 0.855 | 1.000 | 1.000 | 1.000 | 1.000 | 0.484 |
| 8 | 0.425 | 0.450 | 0.705 | 0.850 | 0.999 | 1.000 | 0.279 |
| 9 | 0.484 | 0.855 | 0.855 | 0.955 | 1.000 | 1.000 | 0.102 |
| 10 | 0.999 | 1.000 | 1.000 | 0.918 | |||
| 11 | 0.919 | 0.955 | 0.966 | 1.000 | 1.000 | 1.000 | 0.618 |
| 12 | 0.651 | 0.966 | 0.999 | 0.999 | 0.999 | 0.999 | 0.384 |
| 13 | 0.650 | 0.954 | 0.954 | 0.999 | 0.999 | 1.000 | 0.473 |
Table 4
Comparison of residual load rate under high-risk N-3 faults
| 故障编号 | 配置1条线路 | 配置2条路 | 配置3条线路 | 配置4条路 | 配置5条线路 | 配置6条线路 | 未配置时 |
|---|---|---|---|---|---|---|---|
| 1 | 0.603 | 0.603 | 0.805 | 0.805 | 0.999 | 0.999 | 0.603 |
| 2 | 0.345 | 0.484 | 0.829 | 0.829 | 0.930 | 0.955 | 0.345 |
| 3 | 0.473 | 0.558 | 0.558 | 0.619 | 0.954 | 0.954 | 0.370 |
| 4 | 0.370 | 0.795 | 0.834 | 0.919 | 0.920 | 0.999 | 0.370 |
| 5 | 0.796 | 0.796 | 0.835 | 0.919 | 0.919 | 1.000 | 0.370 |
| 6 | 0.491 | 0.537 | 0.805 | 0.805 | 0.973 | 0.973 | 0.232 |
| 7 | 0.491 | 0.722 | 0.805 | 0.805 | 0.999 | 0.999 | 0.118 |
| 8 | 0.547 | 0.702 | 0.805 | 0.895 | 0.999 | 1.000 | 0.202 |
| 9 | 0.547 | 0.805 | 0.805 | 0.807 | 0.999 | 0.999 | 0.202 |
| 10 | 0.491 | 0.685 | 0.722 | 0.805 | 0.805 | 0.999 | 0.232 |
| 11 | 0.547 | 0.635 | 0.805 | 0.828 | 0.999 | 1.000 | 0.202 |
| 12 | 0.549 | 0.807 | 0.808 | 1.000 | 1.000 | 1.000 | 0.203 |
| 13 | 0.547 | 0.805 | 0.807 | 0.999 | 0.999 | 1.000 | 0.202 |
Table 5
Summary of model performance indicators under high-risk N-2 faults in IEEE 39-bus system
| 故障编号 | MAE | MSE | RMSE | R2 |
|---|---|---|---|---|
| 1 | 0.006 13 | 0.000 210 | 0.014 57 | 0.996 |
| 2 | 0.007 25 | 0.000 330 | 0.018 21 | 0.993 |
| 3 | 0.003 40 | 0.000 140 | 0.012 19 | 0.996 |
| 4 | 0.004 39 | 0.000 250 | 0.015 97 | 0.995 |
| 5 | 0.002 17 | 0.000 210 | 0.014 55 | 0.995 |
| 6 | 0.002 51 | 0.000 200 | 0.014 27 | 0.996 |
| 7 | 0.001 97 | 0.000 240 | 0.015 70 | 0.995 |
| 8 | 0.002 66 | 0.000 140 | 0.012 18 | 0.995 |
| 9 | 0.001 27 | 0.000 160 | 0.012 91 | 0.996 |
| 10 | 0.000 11 | 0.000 004 | 0.002 00 | 0.997 |
| 11 | 0.003 12 | 0.000 570 | 0.023 99 | 0.989 |
| 12 | 0.005 19 | 0.000 290 | 0.017 07 | 0.994 |
| 13 | 0.008 94 | 0.000 360 | 0.019 17 | 0.993 |
Table 6
Summary of model performance indicators under high-risk N-3 faults in IEEE 39-bus system
| 故障编号 | MAE | MSE | RMSE | |
|---|---|---|---|---|
| 1 | 0.008 47 | 0.000 35 | 0.018 89 | 0.992 |
| 2 | 0.007 09 | 0.000 30 | 0.017 46 | 0.993 |
| 3 | 0.007 52 | 0.0002 2 | 0.014 90 | 0.992 |
| 4 | 0.010 55 | 0.000 47 | 0.021 84 | 0.992 |
| 5 | 0.002 50 | 0.000 27 | 0.016 47 | 0.995 |
| 6 | 0.005 68 | 0.000 33 | 0.018 20 | 0.994 |
| 7 | 0.006 27 | 0.000 20 | 0.014 25 | 0.996 |
| 8 | 0.002 60 | 0.000 13 | 0.011 79 | 0.997 |
| 9 | 0.006 98 | 0.000 16 | 0.012 93 | 0.997 |
| 10 | 0.003 39 | 0.000 10 | 0.010 11 | 0.997 |
| 11 | 0.001 75 | 0.000 11 | 0.010 85 | 0.997 |
| 12 | 0.002 23 | 0.000 18 | 0.013 48 | 0.997 |
| 13 | 0.005 92 | 0.000 19 | 0.013 89 | 0.996 |
| [1] | 孙华东, 许涛, 郭强, 等. 英国“8·9” 大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6192. |
| SUN Huadong, XU Tao, GUO Qiang, et al. Analysis on blackout in Great Britain power grid on August 9th, 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 6183-6192. | |
| [2] | 王国春, 董昱, 许涛, 等. 巴西“8·15” 大停电事故分析及启示[J]. 中国电机工程学报, 2023, 43(24): 9461-9470. |
| WANG Guochun, DONG Yu, XU Tao, et al. Analysis and lessons of Brazil blackout event on August 15, 2023[J]. Proceedings of the CSEE, 2023, 43(24): 9461-9470. | |
| [3] | 余鹏飞, 熊小伏, 朱继忠, 等. 基于储能参与的电网连锁跳闸主动防控方法[J]. 电力系统自动化, 2024, 48(1): 119-130. |
| YU Pengfei, XIONG Xiaofu, ZHU Jizhong, et al. Active prevention and control method against power grid cascading tripping based on participation of energy storage[J]. Automation of Electric Power Systems, 2024, 48(1): 119-130. | |
| [4] | 邵瑶, 汤涌, 易俊, 等. 土耳其“3·31” 大停电事故分析及启示[J]. 电力系统自动化, 2016, 40(23): 9-14. |
| SHAO Yao, TANG Yong, YI Jun, et al. Analysis and lessons of blackout in Turkey power grid on March 31, 2015[J]. Automation of Electric Power Systems, 2016, 40(23): 9-14. | |
| [5] |
路尧, 顾晓希, 尹硕, 等. 考虑断面负载率的县域内部新能源电力自平衡交易调度策略研究[J]. 综合智慧能源, 2022, 44(7): 66-72.
doi: 10.3969/j.issn.2097-0706.2022.07.008 |
|
LU Yao, GU Xiaoxi, YIN Shuo, et al. Research on county-level self-balance transaction scheduling strategy for new energy considering section load rate[J]. Integrated Intelligent Energy, 2022, 44(7): 66-72.
doi: 10.3969/j.issn.2097-0706.2022.07.008 |
|
| [6] | 周德才, 张保会, 姚峰, 等. 基于图论的输电断面快速搜索[J]. 中国电机工程学报, 2006, 26(12): 32-38. |
| ZHOU Decai, ZHANG Baohui, YAO Feng, et al. Fast search for transmission section based on graph theory[J]. Proceedings of the CSEE, 2006, 26(12): 32-38. | |
| [7] | 曾凯文, 文劲宇, 程时杰, 等. 复杂电网连锁故障下的关键线路辨识[J]. 中国电机工程学报, 2014, 34(7): 1103-1112. |
| ZENG Kaiwen, WEN Jinyu, CHENG Shijie, et al. Critical line identification of complex power system in cascading failure[J]. Proceedings of the CSEE, 2014, 34(7): 1103-1112. | |
| [8] | 李勇, 刘俊勇, 刘晓宇, 等. 基于潮流熵的电网连锁故障传播元件的脆弱性评估[J]. 电力系统自动化, 2012, 36(19): 11-16. |
| LI Yong, LIU Junyong, LIU Xiaoyu, et al. Vulnerability assessment in power grid cascading failures based on entropy of power flow[J]. Automation of Electric Power Systems, 2012, 36(19): 11-16. | |
| [9] | 刘文颖, 蔡万通, 张宁, 等. 基于联合加权熵的电网自组织临界状态演化[J]. 中国电机工程学报, 2015, 35(6): 1363-1370. |
| LIU Wenying, CAI Wantong, ZHANG Ning, et al. Evolution of self-organizing of grid critical state based on united weighted entropy theory[J]. Proceedings of the CSEE, 2015, 35(6): 1363-1370. | |
| [10] | 曹一家, 陈晓刚, 孙可. 基于复杂网络理论的大型电力系统脆弱线路辨识[J]. 电力自动化设备, 2006, 26(12): 1-5, 31. |
| CAO Yijia, CHEN Xiaogang, SUN Ke. Identification of vulnerable lines in power grid based on complex network theory[J]. Electric Power Automation Equipment, 2006, 26(12): 1-5, 31. | |
| [11] | 张殷, 肖先勇, 李长松. 考虑信息物理交互的电力-信息耦合网络脆弱性分析与改善策略研究[J]. 电网技术, 2018, 42(10): 3136-3147. |
| ZHANG Yin, XIAO Xianyong, LI Changsong. Vulnerability analysis and improvement strategy of power-information coupled networks considering cyber physical interaction[J]. Power System Technology, 2018, 42(10): 3136-3147. | |
| [12] |
徐岩, 雷小双, 秦彬, 等. 基于综合重要度的电网关键线路辨识方法[J]. 电力建设, 2019, 40(7): 85-90.
doi: 10.3969/j.issn.1000-7229.2019.07.011 |
|
XU Yan, LEI Xiaoshuang, QIN Bin, et al. Method based on comprehensive importance for critical line identification in a power grid[J]. Electric Power Construction, 2019, 40(7): 85-90.
doi: 10.3969/j.issn.1000-7229.2019.07.011 |
|
| [13] |
陈洋, 翁伟杰, 黄江东, 等. 一种基于变压器的多路径均衡拓扑结构研究[J]. 综合智慧能源, 2024, 46(4): 68-77.
doi: 10.3969/j.issn.2097-0706.2024.04.009 |
|
CHEN Yang, WENG Weijie, HUANG Jiangdong, et al. Research on multi-path balancing topology based on transformers[J]. Integrated Intelligent Energy, 2024, 46(4): 68-77.
doi: 10.3969/j.issn.2097-0706.2024.04.009 |
|
| [14] | 冀星沛, 王波, 刘涤尘, 等. 相依网络理论及其在电力信息-物理系统结构脆弱性分析中的应用综述[J]. 中国电机工程学报, 2016, 36(17): 4521-4533. |
| JI Xingpei, WANG Bo, LIU Dichen, et al. Review on interdependent networks theory and its applications in the structural vulnerability analysis of electrical cyber-physical system[J]. Proceedings of the CSEE, 2016, 36(17): 4521-4533. | |
| [15] | 林攀, 吴佳毅, 黄涛, 等. 电力系统脆弱性评估综述[J]. 智慧电力, 2021, 49(1): 22-28. |
| LIN Pan, WU Jiayi, HUANG Tao, et al. Overview of vulnerability assessment for power systems[J]. Smart Power, 2021, 49(1): 22-28. | |
| [16] | 刘威, 张东霞, 王新迎, 等. 基于深度强化学习的电网紧急控制策略研究[J]. 中国电机工程学报, 2018, 38(1): 109-119, 347. |
| LIU Wei, ZHANG Dongxia, WANG Xinying, et al. A decision making strategy for generating unit tripping under emergency circumstances based on deep reinforcement learning[J]. Proceedings of the CSEE, 2018, 38(1): 109-119, 347. | |
| [17] | 汪康康, 梅生伟, 魏巍, 等. 基于图卷积网络的快速暂态安全评估方法[J]. 电力系统保护与控制, 2023, 51(1): 43-51. |
| WANG Kangkang, MEI Shengwei, WEI Wei, et al. Fast transient security assessment based on graph neural networks[J]. Power System Protection and Control, 2023, 51(1): 43-51. | |
| [18] | 韩泽雷, 鞠平, 秦川, 等. 面向新型电力系统的频率安全研究综述与展望[J]. 电力自动化设备, 2023, 43(9): 112-124. |
| HAN Zelei, JU Ping, QIN Chuan, et al. Review and prospect of research on frequency security of new power system[J]. Electric Power Automation Equipment, 2023, 43(9): 112-124. | |
| [19] | 卫志农, 裴蕾, 陈胜, 等. 高比例新能源交直流混合配电网优化运行与安全分析研究综述[J]. 电力自动化设备, 2021, 41(9): 85-94. |
| WEI Zhinong, PEI Lei, CHEN Sheng, et al. Review on optimal operation and safety analysis of AC/DC hybrid distribution network with high proportion of renewable energy[J]. Electric Power Automation Equipment, 2021, 41(9): 85-94. | |
| [20] | 孙宏斌, 王康, 张伯明, 等. 采用线性决策树的暂态稳定规则提取[J]. 中国电机工程学报, 2011, 31(34): 61-67, 8. |
| SUN Hongbin, WANG Kang, ZHANG Boming, et al. Rule extraction in transient stability study using linear decision trees[J]. Proceedings of the CSEE, 2011, 31(34): 61-67, 8. | |
| [21] | 赵津蔓, 韩肖清, 牛哲文, 等. 考虑暂态稳定过程的电力系统运行状态辨识[J]. 中国电机工程学报, 2024, 44(20): 7970-7982. |
| ZHAO Jinman, HAN Xiaoqing, NIU Zhewen, et al. Power system operation state identification considering the process of transient stability[J]. Proceedings of the CSEE, 2024, 44(20): 7970-7982. | |
| [22] | 朱继忠, 黄林莹, 陈一熙. 基于代理梯度深度强化学习的电力系统网络攻击事后安全控制策略[J]. 电网技术, 2024, 48(10): 4041-4052. |
| ZHU Jizhong, HUANG Linying, CHEN Yixi. Surrogate gradient-based deep reinforcement learning for power system post-contingency safety control against cyber-attacks[J]. Power System Technology, 2024, 48(10): 4041-4052. | |
| [23] | 张晨宇, 王慧芳, 叶晓君. 基于XGBoost算法的电力系统暂态稳定评估[J]. 电力自动化设备, 2019, 39(3): 77-83, 89. |
| ZHANG Chenyu, WANG Huifang, YE Xiaojun. Transient stability assessment of power system based on XGBoost algorithm[J]. Electric Power Automation Equipment, 2019, 39(3): 77-83, 89. | |
| [24] |
于琳琳, 王泽, 郝元钊, 等. 基于XGBoost的电力系统动态频率响应曲线预测方法[J]. 电力建设, 2023, 44(4): 74-81.
doi: 10.12204/j.issn.1000-7229.2023.04.009 |
|
YU Linlin, WANG Ze, HAO Yuanzhao, et al. XGBoost-based power system dynamic frequency-response curve prediction[J]. Electric Power Construction, 2023, 44(4): 74-81.
doi: 10.12204/j.issn.1000-7229.2023.04.009 |
|
| [25] | HE F F, ZHOU J Z, FENG Z K, et al. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm[J]. Applied Energy, 2019, 237: 103-116. |
| [26] | 蔡晔, 孙溶佐, 王炜宇, 等. 计及连锁故障传播路径的电力系统N-k多阶段双层优化及故障场景筛选模型[J]. 中国电机工程学报,1-14(2024-01-25)[2024-09-23].https://doi.org/10.13334/j.0258-8013.pcsee.232298. |
| CAI Ye, SUN Rongzuo, WANG Weiyu, et al. N-k multi-stage bi-level optimization and fault scenario screening model of power system considering cascading failure propagation path[J]. Proceedings of the CSEE,1-14(2024-01-25)[2024-09-23].https://doi.org/10.13334/j.0258-8013.pcsee.232298. | |
| [27] | 刘文霞, 张书宁, 张艺伟, 等. 计及系统运行状态转换的含风电电力通信耦合网络连锁故障建模[J/OL]. 中国电机工程学报,1-13(2023-08-31)[2024-09-23].https://doi.org/10.13334/j.0258-8013.pcsee.231209. |
| LIU Wenxia, ZHANG Shuning, ZHANG Yiwei, et al. Cascading failure modeling of power communication coupled network with wind power considering system operating state transition[J/OL]. Proceedings of the CSEE,1-13(2023-08-31)[2024-09-23].https://doi.org/10.13334/j.0258-8013.pcsee.231209. | |
| [28] | CAI Y, CAO Y J, LI Y, et al. Cascading failure analysis considering interaction between power grids and communication networks[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 530-538. |
| [29] | CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 785-794. |
| [1] | HUANG Wenxuan, ZENG Haozheng, LIN Yijin, YIN Linfei. Research on the loss of magnetic components based on a data-driven method [J]. Integrated Intelligent Energy, 2025, 47(4): 73-84. |
| [2] | ZHANG Dongdong, LI Fangning, LIU Tianhao. Key technologies for load forecasting in new power systems and their applications in diverse scenario [J]. Integrated Intelligent Energy, 2025, 47(3): 47-61. |
| [3] | DI Liang, DONG Jie, YAN Xinyue, ZHEN Cheng, TIAN Zhe, NIU Jide. Quantifying method for buildings' demand response potential applied to market access condition determination [J]. Integrated Intelligent Energy, 2025, 47(3): 15-22. |
| [4] | SHI Xin, LIU Qiyang, GAO Feng. Application and prospects of deep neural network in new energy systems [J]. Integrated Intelligent Energy, 2025, 47(2): 88-101. |
| [5] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
| [6] | WANG Liang, DENG Song. Anomalous data detection methods for new power systems [J]. Integrated Intelligent Energy, 2024, 46(5): 12-19. |
| [7] | ZHU Weiwei, ZHU Qing, GAO Wensen, LIU Caihua, WANG Luze, LIU Zengji. Switching method for distribution network feeder automation system based on 5G communication delay [J]. Integrated Intelligent Energy, 2024, 46(5): 1-11. |
| [8] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
| [9] | REN Yiming, DU Dongsheng, DENG Xiangshuai, LIAN He, ZHAO Zhemin. Power line fault diagnosis based on GRU and GWO-KELM [J]. Integrated Intelligent Energy, 2024, 46(3): 54-62. |
| [10] | HOU Luyang, GE Leijiao, WANG Biao, WANG Xuanyuan, XU Lianming, WANG Li. Research on the integrated energy system and the electricity market towards new prosumers [J]. Integrated Intelligent Energy, 2022, 44(12): 40-48. |
| [11] | SHI Libao, ZHAI Fang. Data-driven unit commitment model incorporating the uncertainty of wind-PV-load [J]. Integrated Intelligent Energy, 2022, 44(1): 18-25. |
| [12] | SHI Jie, ZHANG Anqin. Power consumption prediction based on multi-parameter cost-sensitive coefficient learning and data-driven model [J]. Huadian Technology, 2021, 43(8): 54-60. |
| [13] | JIA Zhijun, BAI Delong, SONG Yanjie, WANG Jianfei, LI Chunxin. Research on on-line fault diagnosis and treatment of power plant equipment based on KPCA [J]. Huadian Technology, 2021, 43(8): 48-53. |
| [14] | HAN Yi, ZHANG Qiyue, WANG Yankai, YU Yingli, FU Xuchen, RONG Jun, DUAN Lunbo. Performance prediction on a 300 MW CFB based on BP neural network [J]. Huadian Technology, 2020, 42(12): 1-6. |
| [15] | FANG Xiumu, YANG Dayi, ZHOU Zhigang, LIU Jing. Discussion on automation,informatization and intellectualization of heating [J]. Huadian Technology, 2020, 42(11): 34-38. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

