Integrated Intelligent Energy ›› 2025, Vol. 47 ›› Issue (11): 24-35.doi: 10.3969/j.issn.2097-0706.2025.11.003
• Control and Coordinated Optimization of Flexible Resources • Previous Articles Next Articles
LIU Ziteng1,2(
), ZHAO Jianli1,2(
), TAO Weijian3(
), SHEN Cong3(
), AI Qian3,*(
)
Received:2024-09-10
Revised:2024-10-10
Published:2024-11-18
Contact:
AI Qian
E-mail:t627123563@163.com;zhao_1883@163.com;twj5817@mail.shiep.edu.cn;15988556439@163.com;aiqian@sjtu.edu.cn
Supported by:CLC Number:
LIU Ziteng, ZHAO Jianli, TAO Weijian, SHEN Cong, AI Qian. Distributed energy management strategy for smart buildings based on V2B technology[J]. Integrated Intelligent Energy, 2025, 47(11): 24-35.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2025.11.003
Table 1
SBEMS model parameters
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| 5 | 25 | ||
| 0.838 6 | 300 | ||
| 0.561 | 0 | ||
| 0.56 | 7.5 | ||
| 0.56 | 7.5 | ||
| 0.25 | 25.0 | ||
| 0.25 | 2.5 | ||
| 0.267 | 0.88 | ||
| 100 | 0.88 | ||
| 100 | 1 000 | ||
| 0.45 | 450 | ||
| 0.30 | 1.092 | ||
| 0.20 | 2.800 | ||
| 0.20 | 500 | ||
| 0.1 | 0 | ||
| 0.45 | 55 | ||
| 23 | 55 |
Table 2
Daily operational results for each scenario
| 场景 | 购电成本/元 | 碳交易成本/元 | 充电成本/元 | 惩罚成本/元 | 光伏消纳率/% | 风电消纳率/% | 碳排放量/kg |
|---|---|---|---|---|---|---|---|
| 1 | 6 926.99 | 426.26 | 0 | 72.47 | 70.57 | 3 256.32 | |
| 2 | 6 411.52 | 523.47 | 265.00 | 56.24 | 77.94 | 77.96 | 2 863.55 |
| 3 | 5 830.02 | 455.37 | 210.35 | 32.15 | 90.92 | 83.70 | 2 045.35 |
| 4 | 5 601.05 | 336.59 | -353.87 | 6.67 | 94.99 | 92.89 | 1 240.87 |
| [1] | 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2023(城市能源系统专题)[M]. 北京: 中国建筑工业出版社, 2023. |
| [2] | 胡澄, 刘瑜俊, 徐青山, 等. 面向含风电楼宇的电动汽车优化调度策略[J]. 电网技术, 2020, 44(2): 564-572. |
| HU Cheng, LIU Yujun, XU Qingshan, et al. Optimal scheduling strategy for electric vehicles in buildings with wind power[J]. Power System Technology, 2020, 44(2): 564-572. | |
| [3] | 李咸善, 方子健, 李飞, 等. 含多微电网租赁共享储能的配电网博弈优化调度[J]. 中国电机工程学报, 2022, 42(18): 6611-6625. |
| LI Xianshan, FANG Zijian, LI Fei, et al. Game-based optimal dispatching strategy for distribution network with multiple microgrids leasing shared energy storage[J]. Proceedings of the CSEE, 2022, 42(18): 6611-6625. | |
| [4] | 国家发展改革委, 国家能源局. 国家发展改革委等部门关于加强新能源汽车与电网融合互动的实施意见(发改能源〔2023〕1721号)[EB/OL].( 2024-01-04)[2024-09-04].https://www.ndrc.gov.cn/xxgk/zcfb/tz/202401/t20240104_1363096.html. |
| [5] | NEFEDOV E, SIERLA S, VYATKIN V. Internet of energy approach for sustainable use of electric vehicles as energy storage of prosumer buildings[J]. Energies, 2018, 11(8): 11082165. |
| [6] | ZHOU Y, CAO S, HENSEN J L M. An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings interactions, uncertainty and sensitivity analysis[J]. Applied Energy, 2021, 288: 116606. |
| [7] | HE Z, KHAZAEI J, FREIHAUT J D. Optimal integration of vehicle to building (V2B) and building to vehicle (B2V) technologies for commercial buildings[J]. Sustainable Energy, Grids and Networks, 2022, 32: 100921. |
| [8] | BOARD A, SUN Y, HUANG P, et al. Community-to-vehicle-to-community(C2V2C) for inter-community electricity delivery and sharing via electric vehicle: Performance evaluation and robustness analysis[J]. Applied Energy, 2024, 363: 123054. |
| [9] | 张良, 黄久鸿, 戚佳金, 等. 计及碳配额的电动公交车-配电网协同优化调度策略[J]. 电力系统自动化, 2024, 48(12):48-57. |
| ZHANG Liang, HUANG Jiuhong, QI Jiajin, et al. Cooperative optimal scheduling strategy for distribution network with electric buses considering carbon quota[J]. Automation of Electric Power Systems, 2024, 48(12):48-57. | |
| [10] | 王俊, 田浩, 赵二岗, 等. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
| WANG Jun, TIAN Hao, ZHAO Ergang, et al. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles[J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. | |
| [11] | 徐嘉启, 郭红霞, 邹桂林. 基于实时电价的含电动汽车微电网两阶段优化调度[J]. 科学技术与工程, 2023, 23(13): 5571-5578. |
| XU Jiaqi, GUO Hongxia, ZOU Guilin. Two-stage optimization scheduling of microgrid with electric vehicles based on real-time electricity price[J]. Science Technology and Engineering, 2023, 23(13): 5571-5578. | |
| [12] | 邓慧琼, 张晓飞, 曾凡淦, 等. 动态分时电价机制下的电动汽车充放电调度策略研究[J]. 智慧电力, 2023, 51(3): 59-66, 78. |
| DENG Huiqiong, ZHANG Xiaofei, ZENG Fangan, et al. Electric vehicle charging and discharging scheduling strategy under dynamic time-of-use electricity price mechanism[J]. Smart Power, 2023, 51(3): 59-66, 78. | |
| [13] | 刘永江, 郭杉, 贾俊青, 等. 多种充电模式协同的规模化电动汽车分层充电方法[J/OL]. 上海交通大学学报:1-25( 2024-01-24)[2024-09-04].https://doi.org/10.16183/j.cnki.jsjtu.2023.564. |
| LIU Yongjiang, GUO Shan, JIA Junqing, et al. Hierarchical charging method for large-scale electric vehicles coordinated with multiple charging modes[J/OL]. Journal of Shanghai Jiao Tong University: 1-25( 2024-01-24)[2024-09-04].https://doi.org/10.16183/j.cnki.jsjtu.2023.564. | |
| [14] | 吕志鹏, 宋振浩, 李立生, 等. 含电动汽车的工业园区综合能源系统优化调度[J]. 中国电力, 2024, 57(4): 25-31. |
| LV Zhipeng, SONG Zhenhao, LI Lisheng, et al. Optimization scheduling of integrated energy system scheduling in industrial park containing electric vehicles[J]. Electric Power, 2024, 57(4): 25-31. | |
| [15] | NIE Q Y, ZH ANG L H, TONG Z H, et al. Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism[J]. Energy, 2022, 239: 121704. |
| [16] | 王一清, 苏岭东, 顾捷, 等. 计及电动汽车充电需求的城市配电网多场景低碳优化调度研究[J]. 水利水电技术, 2024, 55(7): 32-44. |
| WANG Yiqing, SU Lingdong, GU Jie, et al. Multi-scenario low-carbon optimization scheduling study for urban distribution networks considering electric vehicle charging demand[J]. Water Resources and Hydropower Engineering, 2024, 55(7): 32-44. | |
| [17] | 李咸善, 鄂璇. 分档电价和碳配额激励的含电动汽车微电网优化调度策略[J]. 科学技术与工程, 2022, 22(16): 6537-6546. |
| LI Xianshan, E Xuan. Optimal dispatching strategy for electric vehicle microgrid incentivized by ladder electricity price and carbon quota[J]. Science Technology and Engineering, 2022, 22(16): 6537-6546. | |
| [18] | 房超运, 杨昆, 柴瑞环. 分时电价下含电动汽车的微电网群双层多目标优化调度[J]. 电力科学与技术学报, 2024, 39(1): 124-133. |
| FANG Chaoyun, YANG Kun, CHAI Ruihuan. Two-layer multi-objective optimal dispatching of microgrid group with electric vehicles under time-of-use electricity prices[J]. Journal of Electric Power Science and Technology, 2024, 39(1): 124-133. | |
| [19] | 刘东林, 周霞, 戴剑丰, 等. 考虑虚拟储能的建筑综合能源系统双层优化调度策略[J/OL]. 上海交通大学学报:1-25( 2024-06-25)[2024-09-04]. https://doi.org/10.16183/j.cnki.jsjtu.2024.036. |
| LIU Donglin, ZHOU Xia, DAI Jianfeng, et al. Double layer optimization scheduling strategy for building integrated energy system considering virtual energy storage[J/OL]. Journal of Shanghai Jiao Tong University:1-25( 2024-06-25)[2024-09-04]. https://doi.org/10.16183/j.cnki.jsjtu.2024.036. | |
| [20] | 徐芳琳. 基于柔性负荷调控的楼宇空调用能优化解决方案研究[J]. 能源与节能, 2023(11): 81-83, 88. |
| XU Fanglin. Study on energy consumption optimization solution of building air conditioning based on flexible load regulation[J]. Energy and Energy Conservation, 2023(11): 81-83, 88. | |
| [21] | PEPPANEN J, RENO M J, GRIJALVA S. Thermal energy storage for air conditioning as an enabler of residential demand response[C]//2014 North American Power Symposium (NAPS). IEEE, 2014: 1-6. |
| [22] | 胡鹏, 艾欣, 杨昭, 等. 考虑电能共享的综合能源楼宇群日前协同优化调度[J]. 电力自动化设备, 2019, 39(8): 239-245. |
| HU Peng, AI Xin, YANG Zhao, et al. Day-ahead optimal scheduling for cluster building with integrated energy system considering power sharing[J]. Electric Power Automation Equipment, 2019, 39(8): 239-245. | |
| [23] | 余苏敏, 杜洋, 史一炜, 等. 考虑V2B智慧充电桩群的低碳楼宇优化调度[J]. 电力自动化设备, 2021, 41(9): 95-101. |
| YU Sumin, DU Yang, SHI Yiwei, et al. Optimal scheduling of low-carbon building considering V2B smart charging pile groups[J]. Electric Power Automation Equipment, 2021, 41(9): 95-101. | |
| [24] | 陈威, 王永恒, 沈欣炜, 等. 计及碳排放流的光储充一体化电站及加氢站协同规划[J]. 电力系统自动化, 2024, 48(13): 40-49. |
| CHEN Wei, WANG Yongheng, SHEN Xinwei, et al. Synergistic planning of photovoltaic-storage-charging stations and hydrogen refueling stations considering carbon emission flows[J]. Automation of Electric Power Systems, 2024, 48(13): 40-49. | |
| [25] | 胡超, 彭文河, 方支剑. 基于光储充电站的电动汽车分层优化调度[J]. 综合智慧能源, 2023, 45(9): 11-17. |
| HU Chao, PENG Wenhe, FANG Zhijian. Hierarchical optimization scheduling for electric vehicles with PV-power storage charging stations[J]. Integrated Intelligent Energy, 2023, 45(9): 11-17. | |
| [26] | 梁艳, 郭立, 张丹, 等. 考虑主客观响应能力的电动汽车聚合潜力评估[J]. 综合智慧能源, 2023, 45(9): 1-10. |
| LIANG Yan, GUO Li, ZHANG Dan, et al. Evaluation on the convergence potential of electric vehicles considering their subjective and objective responsiveness[J]. Integrated Intelligent Energy, 2023, 45(9): 1-10. | |
| [27] | 江文辉, 王亚娜, 李延来, 等. 碳限额与交易政策下变质品的联合定价和库存策略[J]. 计算机集成制造系统, 2020, 26(7): 1951-1964. |
| JIANG Wenhui, WANG Yana, LI Yanlai, et al. Joint pricing and inventory strategy for deteriorating items under cap-and-trade policy[J]. Computer Integrated Manufacturing Systems, 2020, 26(7): 1951-1964. | |
| [28] | 秦婷, 刘怀东, 王锦桥, 等. 基于碳交易的电-热-气综合能源系统低碳经济调度[J]. 电力系统自动化, 2018, 42(14): 8-13, 22. |
| QIN Ting, LIU Huaidong, WANG Jinqiao, et al. Carbon trading based low-carbon economic dispatch for integrated electricity-heat-gas energy system[J]. Automation of Electric Power Systems, 2018, 42(14): 8-13, 22. | |
| [29] | 葛磊蛟, 于惟坤, 朱若源, 等. 考虑改进阶梯式碳交易机制与需求响应的综合能源系统优化调度[J]. 综合智慧能源, 2023, 45(7): 97-106. |
| GE Leijiao, YU Weikun, ZHU Ruoyuan, et al. Integrated energy system optimization scheduling considering improved stepped carbon trading mechanism and demand responses[J]. Integrated Intelligent Energy, 2023, 45(7): 97-106. | |
| [30] | 李铂航, 李宏仲, 张民元. 计及负荷特性的综合能源系统低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 72-79. |
| LI Bohang, LI Hongzhong, ZHANG Minyuan. Low-carbon economic dispatch of integrated energy systems considering load characteristics[J]. Integrated Intelligent Energy, 2023, 45(8): 72-79. | |
| [31] | CRISTOFARI C, NORVAISIENE R, CANALETTI J L, et al. Innovative alternative solar thermal solutions for housing in conservation-area sites listed as national heritage assets[J]. Energy & Buildings, 2015,89:123-131. |
| [32] | BUPNOMANO A, PALOMBO A. Building energy performance analysis by an in-house developed dynamic simulation code: An investigation for different case studies[J]. Applied Energy, 2014, 113:788-807. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

