Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (2): 44-52.doi: 10.3969/j.issn.2097-0706.2023.02.006
• Source–Grid Coordination • Previous Articles Next Articles
ZHANG Jinping(), ZHOU Qiang, WANG Dingmei, LI Jin, LIU Lijuan
Received:
2022-10-20
Revised:
2022-11-10
Published:
2023-02-25
Supported by:
CLC Number:
ZHANG Jinping, ZHOU Qiang, WANG Dingmei, LI Jin, LIU Lijuan. Review on solar thermal power generation technologies and their development[J]. Integrated Intelligent Energy, 2023, 45(2): 44-52.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.02.006
Table 1
Characteristics of four generation technologies
项目 | 槽式 | 塔式 | 碟式 | 线性菲涅尔式 | |
---|---|---|---|---|---|
聚光 镜场 | 聚光方式 | 线聚焦 | 点聚焦 | 点聚焦 | 线聚焦 |
二次反射 | 无 | 无 | 无 | 有 | |
跟踪控制 | 简单 | 复杂 | 简单、灵活 | 简单 | |
聚光比 | 30~80 | 600~1 500 | 1 000~4 000 | 25~100 | |
镜面效率 | 低 | 高 | 高 | 低 | |
集热与 储热 | 集热方式 | 分布广泛的接收器 中回收热 | 空腔集中接收 | 空腔接收器、热动力发电机组 | 分布广泛的接收器 中回收热 |
储能 | 可储热 | 可储热 | 否 | 可储热 | |
吸热器运行温度/℃ | 350~740 | 500~1 200 | 700~1 000 | 270~550 | |
蒸汽发生系统 | 动力循环模式 | 朗肯循环 | 朗肯循环、布雷顿循环 | 斯特循环 | 朗肯循环 |
效率/% | 30~40 | 30~40 | 30~40 | 30~40 | |
系统峰值效率/% | 21 | 23 | 29 | 20 | |
系统投资成本 | 中 | 高 | 高 | 中 | |
成熟度 | 商业化程度 | 商业化 | 商业试点 | 示范 | 示范 |
已建装机规模 | 100 MW | 200 MW | kW级 | 50 MW |
[1] | 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14. |
DING Ming, WANG Weisheng, WANG Xiuli, et al. A review on the effect of large-scale PV generation on power system[J]. Proceedings of the CSEE, 2014, 34(1): 1-14. | |
[2] | 赵东元, 胡楠, 傅靖, 等. 提升新能源电力系统灵活性的中国实践及发展路径研究[J]. 电力系统保护与控制, 2020, 48(24):1-8. |
ZHAO Dongyuan, HU Nan, FU Jing, et al. Research on the practice and road map of enhancing the flexibility of a new generation power system in China[J]. Power System Protection and Control, 2020, 48(24): 1-8. | |
[3] | GHADI M J, LI L, ZHAN J, et al. A review on the development of concentrated solar power and its integration in coal-fired power plants[C]// 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia).IEEE, 2019. |
[4] | 杜尔顺, 张宁, 康重庆, 等. 太阳能光热发电并网运行及优化规划研究综述与展望[J]. 中国电机工程学报, 2016, 36(21):5765-5775,6019. |
DU Ershun, ZHANG Ning, KANG Chongqing, et al. Reviews and prospects of the operation and planning optimization for grid integrated concentrating solar power[J]. Proceedings of the CSEE, 2016, 36(21):5765-5775,6019. | |
[5] | 张耀明, 邹宁宇. 太阳能热发电技术[M]. 北京: 化学工业出版社, 2015. |
[6] |
CHEN C, LIU S, LIN Z, et al. Optimal coordinative operation strategy of the electric-thermal-gas integrated energy system considering CSP plant[J]. IET Energy Systems Integration, 2020, 2(1):1-9.
doi: 10.1049/esi2.v2.1 |
[7] |
WANG Y, LOU S, WU Y, et al. Co-allocation of solar field and thermal energy storage for CSP plants in wind integrated power system[J]. IET Renewable Power Generation, 2018, 12(14):1668-1674.
doi: 10.1049/rpg2.v12.14 |
[8] | ALFERIDI A, KARKI R. Adequacy considerations in concentrated solar thermal integrated electric power system[C]// 2017 IEEE Conference on Technologies for Sustainability (SusTech), 2017:1-6. |
[9] | 张福君, 李风梅. 综述太阳能光热发电技术发展[J]. 锅炉制造, 2019(4):33-36,46. |
ZHANG Fujun, LI Fengmei. Review on technological development of concentrating solar power[J]. Boiler Manufacturing, 2019(4):33-36,46. | |
[10] | 邓成刚, 李伟科, 梁展鹏, 等. 太阳光热发电-超临界二氧化碳循环系统经济性分析与优化[J]. 热力发电, 2021, 50(5):59-66. |
DENG Chenggang, LI Weike, LIANG Zhanpeng, et al. Economic analysis and optimization for concentrated solar power-supercritical carbon dioxide Brayton cycle system[J]. Thermal Power Generation, 2021, 50(5):59-66. | |
[11] | 高科技与产业化. 光热发电可担当电力系统主力高参数、大容量与连续发电或是未来发展方向[EB/OL].(2020-09-22)[2022-09-17]. http://cspfocus.cn/market/detail_2020.htm. |
[12] | 张荣发. 塔式与槽式光热电站蒸汽发生系统可靠性研究[J]. 电站辅机, 2021, 42(3):5-9. |
ZHANG Rongfa. Study on reliability of steam generation system in central receiver tower and parabolic through CSP plants[J]. Power Station Auxiliary Equipment, 2021, 42(3):5-9. | |
[13] | 吴智泉. 太阳能光热发电汽轮机及主要技术特点[J]. 汽轮机技术, 2016, 58(6):401-404. |
WU Zhiquan. Technical features of steam turbine for concentrated solar power plant[J]. Turbine technology, 2016, 58(6):401-404. | |
[14] | 崔杨, 李崇钢, 赵钰婷, 等. 考虑风-光-光热联合直流外送的源-网-荷多时段优化调度方法[J]. 中国电机工程学报, 2022, 42(2):559-573. |
CUI Yang, LI Chonggang, ZHAO Yuting, et al. Source-grid-load multi-time interval optimization scheduling method considering wind-photovoltaic-photothermal combined DC transmission[J]. Proceedings of the CSEE, 2022, 42(2):559-573. | |
[15] |
SHABBIR M N S K, CHOWDHURY M S A, LIANG X. A guideline of feasibility analysis and design for concentrated solar power plants[J]. Canadian Journal of Electrical and Computer Engineering, 2019, 41(4):203-217.
doi: 10.1109/CJECE.9754 |
[16] | SCOTT A W, ADEFARATI T, BANSAL R C, et al. Concentrated solar power comparison for power tower and parabolic trough systems[C]// The 10th Renewable Power Generation Conference (RPG 2021), 2021:476-481. |
[17] |
MALAN A, KUMAR K R. A comprehensive review on optical analysis of parabolic trough solar collector[J]. Sustainable Energy Technologies and Assessments, 2021, 46(7):101305.
doi: 10.1016/j.seta.2021.101305 |
[18] |
BAMROONGKHAN P, LERTSATITTHANAKORN C, SATHAPORNPRASATH K, et al. Experimental performance of a photovoltaic-assisted solar parabolic dish thermoelectric system[J]. Case Studies in Thermal Engineering, 2021, 27: 101280.
doi: 10.1016/j.csite.2021.101280 |
[19] | 童家麟, 吕洪坤, 李汝萍, 等. 国内光热发电现状及应用前景综述[J]. 浙江电力, 2019, 38(12):25-30. |
TONG Jialin, LYU Hongkun, LI Ruping, et al. Review on status and application prospect of domestic CSP generation[J]. Zhejiang Electric Power, 2019, 38(12):25-30. | |
[20] | 太阳能光热联盟. 全球太阳能热发电装机容量达到6.8 GW,槽式技术路线占比76%[EB/OL].(2022-02-13)[2022-09-11]. https://www.sohu.com/a/522143847_120093798. |
[21] | 肖白, 王涛. 太阳能光伏-光热联合发电的优化运行模型[J]. 现代电力, 2020, 37(2):163-170. |
XIAO Bai, WANG Tao. Optimal coordinated operation model considering photovoltaic power and concentrating solar power[J]. Modern Electric Power, 2020, 37(2):163-170. | |
[22] |
SIOSHANSI R, DENHOLM P. The value of concentrating solar power and thermal energy storage[J]. IEEE Transactions on Sustainable Energy, 2010, 1(3): 173-183.
doi: 10.1109/TSTE.2010.2052078 |
[23] | 陈润泽, 孙宏斌, 李正烁, 等. 含储热光热电站的电网调度模型与并网效益分析[J]. 电力系统自动化, 2014, 38(19):1-7. |
CHEN Runze, SUN Hongbin, LI Zhengshuo, et al. Grid dispatch model and interconnection benefit analysis of concentrating solar power plants with thermal storage[J]. Automation of Electric Power Systems, 2014, 38(19):1-7. | |
[24] |
张中丹, 李锦键, 王兴贵, 等. 基于静态模型的光热储能电站发电量优化策略[J]. 电力建设, 2019, 40(10):111-117.
doi: 10.3969/j.issn.1000-7229.2019.10.013 |
ZHANG Zhongdan, LI Jinjian, WANG Xinggui, et al. Power generation optimization strategy based on static model for concentrating solar power plant[J]. Electric Power Construction, 2019, 40(10):111-117.
doi: 10.3969/j.issn.1000-7229.2019.10.013 |
|
[25] | 李换兵. 常规槽式太阳能光热电站热力系统动态特性研究[D]. 北京: 华北电力大学, 2016. |
LI Huanbing. Study on dynamic characteristics of the thermal system of conventional parabolic trough solar thermal power station[D]. Beijing: North China Electric Power University, 2016. | |
[26] | 耿直, 刘浩晨, 莫子渊, 等. 基于EBSILON的中低温槽式光热发电系统运行仿真与性能分析[J]. 热力发电, 2020, 49(6):61-68. |
GENG Zhi, LIU Haochen, MO Ziyuan, et al. EBSILON-based operation simulation and performance analysis for medium-low temperature trough photothermal power generation system[J]. Thermal Power Generation, 2020, 49(6):61-68. | |
[27] | 李国营. 1 MW 塔式太阳能发电系统的建模及控制策略的研究[D]. 北京: 华北电力大学, 2012. |
LI Guoying. The research of modeling and control strategies on 1 MW solar tower plant[D]. Beijing: North China Electric Power University, 2012. | |
[28] | 宋汶秦, 吕金历, 赵玲霞, 等. 光热-风电联合运行的电力系统经济调度策略研究[J]. 电力系统保护与控制, 2020, 48(5):95-102. |
SONG Wenqin, LYU Jinli, ZHAO Lingxia, et al. Study on the economic dispatch strategy of power system with combined operation of concentrated solar power and wind farm[J]. Power System Protection and Control, 2020, 48(5):95-102. | |
[29] | 李红伟, 刘彤, 唐鹏, 等. 光热-光伏-风电-火电联合发电调度优化[J/OL]. 中国测试:1-8[2022-04-02]. http://kns.cnki.net/kcms/detail/51.1714.TB.20211130.2048.025.html. |
LI Hongwei, LIU Tong, TANG Peng, et al. Optimization of dispatching of photothermal-photovoltaic-wind-thermal power generation[J/OL]. China Measurement & Test:1-8[2022-04-02]. http://kns.cnki.net/kcms/detail/51.1714.TB.20211130.2048.025.html. | |
[30] | 窦东, 姚李孝. 含光热电站的联合发电系统优化调度[J]. 电网与清洁能源, 2021, 37(6):83-88. |
DOU Dong, YAO Lixiao. Multi-objective optimal scheduling of combined power generation system containing solar thermal power station[J]. Power System and Clean Energy, 2021, 37(6):83-88. | |
[31] | 赵昱宣. 计及多重不确定性和多元协调运行的光热电站调度策略研究[D]. 杭州: 浙江大学, 2020. |
ZHAO Yuxuan. The scheduling strategies of concentrating solar power plants considering multi-uncertainties and multi-resources'corrdination[D]. Hangzhou: Zhejiang University, 2020. | |
[32] | 刘新元, 程雪婷, 薄利明, 等. 考虑源荷协调的含储热光热电站和风电系统的日前-日内调度策略[J]. 中国电力, 2021, 54(8):144-153. |
LIU Xinyuan, CHENG Xueting, BO Liming, et al. Day-ahead and intra-day scheduling strategy of concentrated solar power station with thermal energy storage and wind farm considering coordination between generation and load[J]. Electric Power, 2021, 54(8):144-153. | |
[33] | 张家瑞. 含光热-风电的电力系统多时间尺度源-荷协调调度方法研究[D]. 吉林: 东北电力大学, 2021. |
ZHANG Jiarui. Research on multi-time scale source-load coordinated dispatching method of power system containing CSP-wind power[D]. Jilin: Northeast Electric Power University, 2021. | |
[34] | 崔杨, 于世鹏, 张节潭, 等. 考虑光热电站调峰补偿的高比例新能源电力系统经济调度[J/OL]. 中国电机工程学报:1-15[2022-07-11].https://doi.org/10.13334/j.0258-8013.pcsee. 220054. |
CUI Yang, YU Shipeng, ZHANG Jietan, et al. Economic dispatch of high-proportion renewable energy power system considering peak-shaving compensation of concentrating solar power plant[J/OL]. Proceedings of the CSEE:1-15[2022-07-11].https://doi.org/10.13334/j.0258-8013.pcsee. 220054. | |
[35] | 戴剑丰, 汤奕, 曲立楠, 等. 太阳能光热与风力发电协调优化控制研究[J]. 计算机仿真, 2017, 34(10):73-77. |
DAI Jianfeng, TANG Yi, QU Li'nan, et al. Research on coordinated optimization control of solar thermal and wind power generation[J]. Computer Simulation, 2017, 34(10):73-77. | |
[36] | 郑连华, 文中, 邱智武, 等. 计及光热电站和氢储能的综合能源系统低碳优化运行[J/OL]. 电测与仪表:1-9[2022-07-11]. http://kns.cnki.net/kcms/detail/23.1202.TH.20220530.1813.003.html. |
ZHENG Lianhua, WEN Zhong, QIU Zhiwu, et al. Low-carbon optimized operation of an integrated energy system that takes into account solar thermal power plants and hydrogen storage[J/OL]. Electrical Measurement & Instrumentation:1-9[2022-07-11]. http://kns.cnki.net/kcms/detail/23.1202.TH.20220530.1813.003.html. | |
[37] | 臧海祥, 马铭欣, 周亦洲, 等. 电力市场环境下风电-光热-生物质混合电站鲁棒优化调度模型[J]. 电力系统保护与控制, 2022, 50(5):1-11. |
ZANG Haixiang, MA Mingxin, ZHOU Yizhou, et al. Robust optimal scheduling model for a 'wind power-concentrating solar power-biomass' hybrid power plant in the electricity market[J]. Power System Protection and Control, 2022, 50(5):1-11. | |
[38] | SAKELLARIDIS N, MANTZARIS J, TSOURAKIS G, et al. Operation and security assessment of the power system of Crete with integration of pumped storage and concentrated solar thermal plants[C]// IREP.IEEE, 2013:1-12. |
[39] | 彭院院, 周任军, 李斌, 等. 计及光热发电特性的光-风-火虚拟电厂双阶段优化调度[J]. 电力系统及其自动化学报, 2020, 32(4):21-28. |
PENG Yuanyuan, ZHOU Renjun, LI Bin, et al. Two-stage optimal dispatching for solar-wind-thermal virtual power plant considering characteristic of concentrating solar power[J]. Proceedings of the CSU-EPSA, 2020, 32(4):21-28. | |
[40] |
赵玲霞, 王兴贵, 丁颖杰, 等. 考虑分时电价及光热电站参与的多能源虚拟电厂优化调度[J]. 电力建设, 2022, 43(4):119-129.
doi: 10.12204/j.issn.1000-7229.2022.04.013 |
ZHAO Lingxia, WANG Xinggui, DING Yingjie, et al. Optimal dispatch of multi-energy virtual power plant considering time-of-use electricity price and CSP plant[J]. Electric Power Construction, 2022, 43(4):119-129.
doi: 10.12204/j.issn.1000-7229.2022.04.013 |
|
[41] | 曾贤强, 张警卫, 王晓兰. 计及多重不确定性及光热电站参与的区域综合能源系统配置与运行联合优化[J/OL]. 高电压技术:1-15[2022-07-11].https://doi.org/10.13336/j.1003-6520.hve.20211326. |
ZENG Xianqiang, ZHANG Jingwei, WANG Xiaolan. Optimal configuration of regional integrated energy system taking into account multiple uncertainties and the participation of concentrating solar power stations[J/OL]. High Voltage Engineering:1-15[2022-07-11].https://doi.org/10.13336/j.1003-6520.hve.20211326. | |
[42] |
KUEH K C Y, NATHAN G J, SAW W L. Storage capacities required for a solar thermal plant to avoid unscheduled reductions in output[J]. Solar Energy, 2015, 118:209-221.
doi: 10.1016/j.solener.2015.04.040 |
[43] |
COCCO D, SERRA F. Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants[J]. Energy, 2015, 81:526-536.
doi: 10.1016/j.energy.2014.12.067 |
[44] |
BOUKELIA T E, MECIBAH M S, KUMAR B N, et al. Investigation of solar parabolic trough power plants with and without integrated TES(thermal energy storage)and FBS(fuel backup system)using thermic oil and solar salt[J]. Energy, 2015, 88:292-303.
doi: 10.1016/j.energy.2015.05.038 |
[45] |
DERSCH J, GEYER M, HERRMANN U, et al. Through integration into power plants—A study on the performance and economy of integarted solar combined cycle systems[J]. Energy, 2004, 29(5):947-959.
doi: 10.1016/S0360-5442(03)00199-3 |
[46] | PRAVEENR P, BASEER M A, SANKARA N K. Design performance analysis and optimization of a 100 MW concentrated solar power plant with thermal energy storage[C]// 2018 International Conference on Current Trends towards Converging Technologies(ICCTCT)).IEEE, 2018. |
[47] |
BOUKELIA T E, ARSLAN O, MECIBAH M S. ANN-based optimization of a parabolic trough solar thermal power plant[J]. Applied Thermal Engineering, 2016, 107:1210-1218.
doi: 10.1016/j.applthermaleng.2016.07.084 |
[48] | 崔杨, 杨志文, 严干贵, 等. 降低火电机组调峰成本的光热电站储热容量配置方法[J]. 中国电机工程学报, 2018, 38(6):1605-1611. |
CUI Yang, YANG Zhiwen, YAN Gangui, et al. Capacity configuration of thermal energy storage within CSP to reduce the cost of peak load regulation[J]. Proceedings of the CSEE, 2018, 38(6):1605-1611. | |
[49] | 姚元玺. 计及调度经济性的光热电站储热容量配置方法[J]. 太阳能学报, 2019, 40(11):3039-3045. |
YAO Yuanxi. A method for allocation heat storage capacity of concentrating solar power considering scheduling economy[J]. Acta Energiae Solaris Sinica, 2019, 40(11):3039-3045. | |
[50] |
KOST C, FLATH C M, MÖST D. Concentrating solar power plant investment and operation decisions under different price and support mechanisms[J]. Energy Policy, 2013, 61:238-248.
doi: 10.1016/j.enpol.2013.05.040 |
[51] | 傅旭, 王进军, 张雨津, 等. 含多类型电源的电力系统光热发电效益评估方法[J]. 电力工程技术, 2022, 41(1):213-218. |
FU Xu, WANG Jinjun, ZHANG Yujin, et al. Benefit evaluation of CSP in power system with multiple types of power sources[J]. Electric Power Engineering Technology, 2022, 41(1):213-218. | |
[52] | 沙韵, 周明, 杨宏基, 等. 考虑光热电站和直流联络线灵活性的高比例新能源互联系统优化运行[J]. 电网技术, 2020, 44(9):3306-3313. |
SHA Yun, ZHOU Ming, YANG Hongji, et al. Interconnected power system optimal operation with renewable generation considering flexibility of concentrating solar power plants & HVDC tie-line[J]. Power System Technology, 2020, 44(9):3306-3313. | |
[53] |
HE G, CHEN Q, KANG C, et al. Optimal offering strategy for concentrating solar power plants in joint energy, reserve and regulation markets[J]. IEEE Transactions on Sustainable Energy, 2016, 7(3): 1245-1254.
doi: 10.1109/TSTE.5165391 |
[54] |
梁政, 魏震波, 孙舟倍, 等. 光热发电商参与下的电力现货市场均衡分析[J]. 电力建设, 2022, 43(1):122-131.
doi: 10.12204/j.issn.1000-7229.2022.01.014 |
LIANG Zheng, WEI Zhenbo, SUN Zhoubei, et al. Analysis of the equilibrium of electricity spot market with the participation of CSP[J]. Electric Power Construction, 2022, 43(1):122-131.
doi: 10.12204/j.issn.1000-7229.2022.01.014 |
|
[55] |
ZHAO Y, LIU S, LIN Z, et al. A mixed CVaR-based stochastic information gap approach for building optimal offering strategies of a CSP plant in electricity markets[J]. IEEE Access, 2020, 8:85772-85783.
doi: 10.1109/Access.6287639 |
[56] |
潘丽, 杜尔顺, 王剑晓, 等. 风力发电与光热发电联合运行经济效益研究[J]. 综合智慧能源, 2022, 44(1): 26-30.
doi: 10.3969/j.issn.2097-0706.2022.01.004 |
PAN Li, DU Ershun, WANG Jianxiao, et al. Research on economic benefits of joint operation of wind farms and concentrating solar power plants[J]. Integrated Intelligent Energy, 2022, 44(1): 26-30.
doi: 10.3969/j.issn.2097-0706.2022.01.004 |
[1] | LI Feifei, WANG Shuhong, CUI Jindong. Study on influencing factors of automobile carbon emissions from the perspective of whole life cycle: A case study of Jilin Province [J]. Integrated Intelligent Energy, 2024, 46(8): 20-27. |
[2] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[3] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[4] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[5] | LI Chunhua, ZHU Biao. Analysis on solar energy resources distribution of four provinces in northwestern China and long-term variation [J]. Integrated Intelligent Energy, 2024, 46(2): 75-81. |
[6] | CUI Jindong, WANG Yuqing. Research on user-side energy storage coordinated and optimized scheduling mechanism under cloud energy storage mode [J]. Integrated Intelligent Energy, 2023, 45(9): 18-25. |
[7] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[8] | YU Haibin, GAO Yiling, LU Zengjie, DONG Shuai, LU Lin, REN Yizhi. Low-carbon economic scheduling of deep peak regulating market with the participation of wind power,thermal power,storage and carbon capture units considering demand response [J]. Integrated Intelligent Energy, 2023, 45(8): 80-89. |
[9] | SUN Jian, WANG Yinwu, WU Kexin, TAO Jianlong, QIN Yu. Research and application of heat pump technology in integrated energy systems [J]. Integrated Intelligent Energy, 2023, 45(4): 1-11. |
[10] | DOU Zihui, LIU Jingxia, LI Baoli. Study on the solar-assisted ground-source heat pump system with seasonal heat storage in cold regions [J]. Integrated Intelligent Energy, 2023, 45(4): 52-58. |
[11] | LI Hua, LU Mingxuan, TONG Yongji, ZHONG Chongfei. Application of situational awareness technology in the safe and stable operation of new power systems [J]. Integrated Intelligent Energy, 2023, 45(3): 24-33. |
[12] | ZENG Hui, DU Yuan, LI Tao, XUE Yixun, SUN Kaiyuan, XIA Tian, SUN Hongbin. Low-carbon planning of a park-level integrated electric and heating system considering carbon trading and green certificate trading [J]. Integrated Intelligent Energy, 2023, 45(2): 22-29. |
[13] | ZHANG Siliang, QI Lintong, QU Haowei, ZANG Dehua, ZHOU Wenhan, WANG Lidi. Research on solar assisted air source heat pump heating systems [J]. Integrated Intelligent Energy, 2023, 45(12): 10-19. |
[14] | ZHONG Wei, BO Qiming, CAI Chenyu, LU Shimeng, LI Manjie. Intelligent scheduling and control of a geothermal-gas complementary heating system based on model prediction [J]. Integrated Intelligent Energy, 2023, 45(12): 29-35. |
[15] | YANG Zhengjun, LIANG Shixing, XU Gang, LIU Wenyi, WANG Ying, CUI Jianwei. Capacity optimization configuration of wind-solar complementary electricity-alcohol cogeneration system [J]. Integrated Intelligent Energy, 2023, 45(12): 71-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||