Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (8): 26-35.doi: 10.3969/j.issn.2097-0706.2023.08.004
• Dual Carbon Projects • Previous Articles Next Articles
HE Shuwei1,2(), HAN Yinghui1,3,*(), XU Wenbin4(), ZHANG Yuanxun2,*(), SHAN Yulong3(), YU Yunbo3()
Received:
2023-06-02
Revised:
2023-06-14
Published:
2023-08-25
Supported by:
CLC Number:
HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies[J]. Integrated Intelligent Energy, 2023, 45(8): 26-35.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.08.004
Table 1
Parameters of the system model
参数 | 含义 | 数值 |
---|---|---|
t | 模拟的时长 | 0 |
CPEV | 电车平均每100 km电耗 | 12 kW·h |
CPFV | 燃油车平均每100 km油耗 | 11.1 L |
CPDV | 柴油货车平均每100 km油耗 | 23.0 L |
Eother | 其他用途私有车CO2排放量 | 3.855 423×107 t |
CO2排放因子 | 柴油,2.69 kg/L;车用汽油,2.14 kg/L;标准煤,2.62 kg/kg | |
fE-C | 耗电量-标准煤转换因子 | 0.378 kg/(kW·h) |
pEV | 电车在私人乘用车中的保有量占比 | 分情景赋予不同的值 |
pFV | 传统燃油车在私人乘用车中的保有量占比 | 分情景赋予不同的值 |
pRE | 可再生能源比例 | 分情景赋予不同的值 |
pGDP | 北京市年均GDP变化率 | 2010 —2021年历史数据,2021年后为0.05 |
Table 2
Variables and calculation formulas of the model
变量 | 含义 | 计算公式 | 单位 |
---|---|---|---|
NPPV | 北京市私人乘用车保有量 | 43.417lnt+369.74 | 万辆,(Saturation: |
NDV | 北京市私人货运汽车保有量 | 0.357 9t2-1.857 3t+9.163 3 | 万辆,(Saturation: |
ND | 北京市机动车驾驶员数量 | 239.24lnt+597.9 | 万人,(Saturation: |
MPPV | 私人乘用车年平均行驶里程 | 4 936.59ND/NPPV | km/a |
MDV | 私人货运汽车年平均行驶里程 | km/a,(Saturation: | |
NEV | 北京市私人电车数量 | 万辆 | |
NFV | 北京市私人传统燃油车数量 | 万辆 | |
CEV | 平均每辆电车年耗电量 | kW·h | |
CFV | 平均每辆传统燃油车的年油耗(汽油) | L | |
CDV | 平均每辆私人货车的年柴油消耗量(柴油) | L | |
CEV,all | 北京市私人电车年总用电量 | kW·h | |
CFV,all | 北京市私人传统燃油车年总耗油量(汽油) | L | |
CDV,all | 北京市私人货车年总耗油量(柴油) | L | |
EEV | 北京市私人电车年CO2排放量 | t | |
EFV | 北京市私人传统燃油车年CO2排放量 | t | |
EDV | 北京市私人货车年CO2排放量 | t | |
EPPV | 北京市私人所有车辆年CO2排放量 | EEV+EFV+EDV+Eother | t |
Eall | 北京市私有车辆的累计CO2排放量(从2010年开始) | INTEG(EPPV) | t |
Table 3
Scenarios and their parameters
情景 | 参数 | 数值 |
---|---|---|
基准情景(Base Case) | 私人乘用车中电车保有量占比pEV,Base | WITH LOOKUP (Time), (2010, 0), (2020, 0.06)[ |
可再生能源比例pRE,Base | WITH LOOKUP (Time), (2010, 0), (2020, 0.104)[ | |
燃料替代情景(EV Substitution) | 私人乘用车中电车保有量占比pEV,EVS | WITH LOOKUP (Time), (2010, 0), (2020, 0.06), (2030, 0.30), (2040, 0.50), (2050, 0.80), (2060, 1.00) |
可再生能源比例pRE,EVS | pRE,EVS=pRE,Base | |
清洁能源情景(Clean Energy) | 私人乘用车中电车保有量占比pEV,CE | pEV,CE=pEV,Base |
可再生能源比例pRE,CE | WITH LOOKUP (Time), (2010, 0), (2020, 0.104), (2030, 0.500), (2040, 0.800), (2050, 0.900), (2060, 1.000) | |
燃料替代和清洁能源两者实施情景(Green Action) | 私人乘用车中电车保有量占比pEV,GA | pEV,GA=pEV,EVS |
可再生能源比例pRE,GA | pRE,GA= pRE,CE |
Table 4
Measure and simulated numbers of private vehicles from 2010 to 2020
年份 | 真实值/万辆 | 模拟值/万辆 | 误差/% |
---|---|---|---|
2020 | 478.03 | 469.71 | -1.77 |
2019 | 471.77 | 465.14 | -1.43 |
2018 | 462.46 | 460.02 | -0.53 |
2017 | 453.68 | 454.23 | 0.12 |
2016 | 440.95 | 447.53 | 1.47 |
2015 | 429.39 | 439.62 | 2.33 |
2014 | 425.98 | 429.93 | 0.92 |
2013 | 415.89 | 417.44 | 0.37 |
2012 | 396.56 | 399.83 | 0.82 |
2011 | 378.50 | 369.74 | -2.37 |
[1] | 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[N]. 人民日报,2021-10-25(001). |
[2] | IEA. Growth of key indicators in China,1980—2020[DB/OL].(2022-10-26)[2023-05-28]. https://www.iea.org/data-and-statistics/charts/growth-of-key-indicators-in-china-1980-2020?language=zh. |
[3] |
LIU X, MA S, TIAN J, et al. A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing[J]. Energy Policy, 2015, 85:253-270.
doi: 10.1016/j.enpol.2015.06.007 |
[4] | WEN L, BAI L. System dynamics modeling and policy simulation for urban traffic:A case study in Beijing[J]. Environmental Modeling & Assessment, 2017, 22:363-378. |
[5] |
WEN L, WANG A. System dynamics model of Beijing urban public transport carbon emissions based on carbon neutrality target[J]. Environment,Development and Sustainability, 2022, 23:1-26.
doi: 10.1007/s10668-019-00578-z |
[6] |
NAKATA T. Energy-economic models and the environment[J]. Progress in Energy and Combustion Science, 2004, 30(4):417-475.
doi: 10.1016/j.pecs.2004.03.001 |
[7] |
PRESSLEY P N, AZIZ T N, DECAROLIS J F, et al. Municipal solid waste conversion to transportation fuels: A life-cycle estimation of global warming potential and energy consumption[J]. Journal of Cleaner Production, 2014, 70:145-153.
doi: 10.1016/j.jclepro.2014.02.041 |
[8] | MESSNER S, SCHRATTENHOLZER L. MESSAGE-MACRO:Linking an energy supply model with a macroeconomic module and solving it iteratively[J]. Energy, 2000, 5(3):267-282. |
[9] |
HICKMAN R, ASHIRU O, BANISTER D. Transport and climate change: Simulating the options for carbon reduction in London[J]. Transport Policy, 2010, 17(2):110-125.
doi: 10.1016/j.tranpol.2009.12.002 |
[10] | OGATA K. System dynamics[J]. Englewood Cliffs:Prentice-Hall, 1978. |
[11] | BALA B K, ARSHAD F M, NOH K M. System dynamics:Modelling and simulation[M]. 2017:274. |
[12] | COYLE R G. System dynamics modelling:A practical approach[M]. Boca Raton: Chapman & Hall/CRC, 1988. |
[13] | 杨顺顺. 系统动力学应用于中国区域绿色发展政策仿真的方法学综述[J]. 中国环境管理, 2017, 9(6):41-47. |
YANG Shunshun. Research progress of application of system dynamics in regional green development policy simulation in China[J]. Chinese Journal of Environmental Management, 2017, 9(6):41-47. | |
[14] | STERMAN J D. System dynamics modeling:Tools for learning in a complex world[J]. California Management Review, 2001, 43(4):8-25. |
[15] | RICHARDSON G P. Problems for the future of system dynamics[J]. System Dynamics Review: The Journal of the System Dynamics Societ, 1996, 12(2):141-157. |
[16] | 利亚姆·吉布森. 中国高速增长时代是否永远结束了?[EB/OL].(2023-01-15)[2023-05-28]. https://chinese.aljazeera.net/economy/2023/1/25/%E4%B8%AD%E5%9B%BD%E9%AB%98%E9%80%9F%E5%A2%9E%E9%95%BF%E6%97%B6%E4%BB%A3%E6%98%AF%E5%90%A6%E6%B0%B8%E8%BF%9C%E7%BB%93%E6%9D%9F%E4%BA%86. |
[17] | 汤立斌. 2023年北京GDP预期目标增长4.5%以上[EB/OL].(2023-01-15)[2023-05-28]. https://news.cnstock.com/news,bwkx-202301-5006348.htm. |
[18] | 蒋飞. 中国潜在经济增速初探——宏观经济专题报告[R]. 深圳: 长城证券, 2022. |
[19] | 杨懿瑾. 北京市将推动存量燃油车电动化[EB/OL]. (2022-09-05)[2023-05-28]. http://bj.news.cn/2022-09/05/c_1128975763.htm. |
[20] | 北京市人民政府. 北京市“十四五”时期能源发展规划[Z]. 2022. |
[21] | 曹政. 《北京市碳达峰实施方案》发布 2030年可再生能源消费比重将达25%左右[EB/OL].(2022-10-14) [2023-05-28]. https://www.beijing.gov.cn/gongkai/shuju/sjjd/202210/t20221014_2835571.html. |
[22] | 孙岩, 张昱, 刘学敏. 北京市交通碳排放的驱动因素分析——基于城市发展视角[J]. 城市与环境研究, 2020, 23(1):81-95. |
SUN Yan, ZHANG Yu, LIU Xuemin. Driving factors of urban transportation CO2 emission in Beijing—An analysis based on the urban development perspective[J]. Urban and Environmental Research, 2020, 23(1):81-95. | |
[23] | 李云燕, 羡瑛楠. 北京市低碳交通发展现状、问题与对策研究[J]. 中国发展, 2014, 14(4):13-18. |
LI Yunyan, XIAN Yingnan. Current situation, issues and countermeasures of low carbon transportation in Beijing[J]. China Development, 2014, 14(4):13-18. | |
[24] | 国家统计局. 国家数据[EB/OL]. (2022-12-31)[2023-05-28]. https://data.stats.gov.cn/easyquery.htm?cn=E0103. |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[3] | HUANG Xiaofan, LI Jiarui, LIU Hui, TANG Xiaoping, WANG Ziyao, WANG Tong. Comprehensive benefit analysis on the cascade utilization of a power battery system [J]. Integrated Intelligent Energy, 2024, 46(7): 63-73. |
[4] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[5] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[6] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[7] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[8] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[9] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[10] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[11] | YAN Limei, HU Wenshuo. Carbon flow tracking method of power systems based on the complex power distribution matrix [J]. Integrated Intelligent Energy, 2023, 45(8): 1-10. |
[12] | LI Fangyi, LI Nan, ZHOU Yan, XIE Wu. Prediction on the regional carbon emission factor for power generation based on multi-dimensional data and deep learning [J]. Integrated Intelligent Energy, 2023, 45(8): 11-17. |
[13] | LI Feifei, XU Huiwei, WANG Shuhong, CUI Jindong. Measurement analysis on carbon emissions from agriculture industry in Jilin province and the influencing factors [J]. Integrated Intelligent Energy, 2023, 45(8): 36-43. |
[14] | LIU Tianyang, GAO Yajing, XIE Dian, ZHAO Liang. Analysis on the construction path of functional zero-carbon parks [J]. Integrated Intelligent Energy, 2023, 45(8): 44-52. |
[15] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||