Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (12): 43-52.doi: 10.3969/j.issn.2097-0706.2023.12.006
• Optimal Operation and Control • Previous Articles Next Articles
JI Mingda1(), GOU Yujun1,*(), ZHONG Xiaohui2
Received:
2023-05-07
Revised:
2023-05-24
Published:
2023-12-25
Supported by:
CLC Number:
JI Mingda, GOU Yujun, ZHONG Xiaohui. Performance simulation and analysis on photovoltaic and photothermal integration system in Baiyin area[J]. Integrated Intelligent Energy, 2023, 45(12): 43-52.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.12.006
[1] |
DUBEY S, SARVAIYA J N, SESHADRI B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—A review[J]. Energy Procedia, 2013, 33: 311-321.
doi: 10.1016/j.egypro.2013.05.072 |
[2] |
WOLF M. Performance analyses of combined heating and photovoltaic power systems for residences[J]. Energy Conversion, 1976, 16(1): 79-90.
doi: 10.1016/0013-7480(76)90018-8 |
[3] |
TIWARI G N, AL-HELAL I M. Analytical expression of temperature dependent electrical efficiency of N-PVT water collectors connected in series[J]. Solar Energy, 2015, 114: 61-76.
doi: 10.1016/j.solener.2015.01.026 |
[4] |
SOLANKI S C, DUBEY S, TIWARI A. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors[J]. Applied Energy, 2009, 86(11): 2421-2428.
doi: 10.1016/j.apenergy.2009.03.013 |
[5] |
JOUHARA H, MILKO J, DANIELEWICZ J, et al. The performance of a novel flat heat pipe based thermal and PV/T(photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material[J]. Energy, 2016, 108: 148-154.
doi: 10.1016/j.energy.2015.07.063 |
[6] | ITO S, MIURA N, TAKANO Y. Studies of heat pumps using direct expansion type solar collectors[J]. Journal of Solar Energy Engineer, 2003, 127(1): 60-64. |
[7] | GANG P, JIE J, WEI H, et al. Performance of photovoltaic solar assisted heat pump system in typical climate zone[J]. Journal of Energy & Environment, 2007, 6: 1-9. |
[8] | 陈红兵, 张晓坤, 王聪聪, 等. 一种基于微热管阵列的太阳能PV/T热泵系统能效实验研究[J]. 可再生能源, 2021, 39(5):611-617. |
CHEN Hongbing, ZHANG Xiaokun, WANG Congcong, et al. An experimental research on energy-saving efficiency of a solar PV/T heat pump system based on micro heat pipe array[J]. Renewable Energy Resources, 2021, 39(5):611-617. | |
[9] |
ABDEL-HAMID M, WEI G, SHERIN M, et al. Comparative study of different photovoltaic/thermal hybrid configurations from energetic and exergetic points of view: A numerical analysis[J]. Journal of Solar Energy Engineering, 2021, 143(6): 061006.
doi: 10.1115/1.4051154 |
[10] | 白梓丁, 于国清. 光伏光热一体化组件性能实验探究与分析[J]. 上海节能, 2021(2):137-141. |
BAI Ziding, YU Guoqing. Experimental research and analysis on performance of photovoltaic thermal integrated module[J]. Shanghai Energy Conservation, 2021(2):137-141. | |
[11] | 张星晨, 吕建, 霍雨霞, 等. 积尘对光伏光热系统性能影响的实验研究[J]. 可再生能源, 2020, 38(9):1169-1174. |
ZHANG Xingchen, LV Jian, HUO Yuxia, et al. Experimental study on the effect of dust on the performance of photovoltaic photothermal system[J]. Renewable Energy Resources, 2020, 38(9):1169-1174. | |
[12] |
ZHOU J, ZHAO X, YUAN Y, et al. Mathematical and experimental evaluation of a mini-channel PV/T and thermal panel in summer mode[J]. Solar Energy, 2021, 224: 401-410.
doi: 10.1016/j.solener.2021.05.096 |
[13] | 冯琳. 光伏太阳能热泵系统的模拟研究和经济性分析[D]. 南京: 南京理工大学, 2012. |
FENG Lin. Simulation study and economic analysis on photovoltaic-solar assisted heat pump system[D]. Nanjing: Nanjing University of Science&Technology, 2012. | |
[14] | 陈敏. 太阳能光伏光热综合利用系统建模[J]. 节能, 2020, 39(5):150-153. |
[15] | 贺云龙, 代彦军. 基于PV/T的太阳能热泵热水系统实验研究[J]. 太阳能学报, 2020, 41(12):83-89. |
HE Yunlong, DAI Yanjun. Experimental study of solar heat pump hot water system based on PV/T module[J]. Acta Energiae Solaris Sinica, 2020, 41(12):83-89. | |
[16] |
SURESH V, IQBAL S M, REDDY K S, et al. 3-D numerical modelling and experimental investigation of coupled photovoltaic thermal and flat plate collector[J]. Solar Energy, 2021, 224: 195-209.
doi: 10.1016/j.solener.2021.05.079 |
[17] |
XIA L, MA Z J, KOKOGIANNAKIS G, et al. A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors[J]. Applied Energy, 2018, 214: 178-190.
doi: 10.1016/j.apenergy.2018.01.067 |
[18] | 马晓丰. 太阳能光伏光热-热泵系统动态模拟及优化研究[D]. 青岛: 青岛理工大学, 2018. |
MA Xiaofeng. Study on dynamic simulation and optimization of PV/T-heat pump system[D]. Qingdao: Qingdao University of Technological, 2018. | |
[19] |
YAO J, LIU W J, ZHAO Y, et al. Two-phase flow investigation in channel design of the roll-bond cooling component for solar assisted PVT heat pump application[J]. Energy Conversion and Management, 2021, 235: 113988.
doi: 10.1016/j.enconman.2021.113988 |
[20] | 刘新. 涡旋压缩机实用结构的理论吸排气容积计算[J]. 流体机械, 1994(3):59-61,27,65. |
[21] | 郭光正. 基于高效吸热板太阳能光伏光热一体化系统仿真与试验研究[D]. 唐山: 华北理工大学, 2022. |
GUO Guangzheng. Simulation and experimental research on integrated system of photovoltaic and photothermal based on high-efficiency collector[D]. Tangshan: North China University of Science and Technology, 2022. | |
[22] |
梁曦文, 王映品, 李林, 等. 有源电力滤波器直流电压简单模糊比例控制[J]. 综合智慧能源, 2022, 44(4):28-35.
doi: 10.3969/j.issn.2097-0706.2022.04.004 |
LIANG Xiwen, WANG Yingpin, LI Lin, et al. Simple fuzzy proportional control on DC-link voltage of active power filters[J]. Integrated Intelligent Energy, 2022, 44(4):28-35.
doi: 10.3969/j.issn.2097-0706.2022.04.004 |
|
[23] |
高明, 陈家豪, 王丽晓, 等. 考虑光伏不确定性因素的电力系统概率潮流三点估计法[J]. 综合智慧能源, 2022, 44(9):1-10.
doi: 10.3969/j.issn.2097-0706.2022.09.001 |
GAO Ming, CHEN Jiahao, WANG Lixiao, et al. A three-point probabilistic load flow estimation algorithm for the power system considering photovoltaic uncertainties[J]. Integrated Intelligent Energy, 2022, 44(9):1-10.
doi: 10.3969/j.issn.2097-0706.2022.09.001 |
|
[24] |
王义, 杨志伟, 吴坡, 等. 计及高比例分布式光伏能源接入的配电网状态估计[J]. 综合智慧能源, 2022, 44(10):12-18.
doi: 10.3969/j.issn.2097-0706.2022.10.002 |
WANG Yi, YANG Zhiwei, WU Po, et al. State estimation for the distribution network with high-proportion distributed photovoltaic energy[J]. Integrated Intelligent Energy, 2022, 44(10): 12-18.
doi: 10.3969/j.issn.2097-0706.2022.10.002 |
[1] | TONG Jialin, ZHANG Yan, LIU Wensheng, MAO Jianbo, YE Xuemin. Numerical simulation on co-combustion and alkali metal distribution in an opposed firing boiler mixed with sludge [J]. Integrated Intelligent Energy, 2024, 46(8): 50-58. |
[2] | SONG Jianjun, FU Kun, CHEN Meiqian. Simulation on the gas-solid flows and combustion in a multi-pass circulating fluidized bed based on computational particle fluid dynamics method [J]. Integrated Intelligent Energy, 2024, 46(8): 59-66. |
[3] | YANG Lei, WANG Rui, MA Lili, SUN Ning, LI Xuelian, CHEN Ting, WANG Shaorong, SHI Caixia. Research on Ca and Fe co-doped PrBaCo2O5+δ as a cathode material of solid oxide fuel cells [J]. Integrated Intelligent Energy, 2024, 46(7): 47-52. |
[4] | ZHANG Lidong, LI Pei, JIANG Tieliu, LI Qinwei, ZHANG Lei, XU Feng, MENG Xin. Numerical simulation on the wind blocking and speed increasing effect of trough solar arrays [J]. Integrated Intelligent Energy, 2024, 46(6): 1-7. |
[5] | TANG Zihan, WANG Shuaijie, JU Zhenhe, LEI Zhiqi. Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps [J]. Integrated Intelligent Energy, 2024, 46(4): 34-41. |
[6] | MENG Qiang, TIAN Xi, XIONG Yaxuan. Study on preparation of shape-stable phase-change materials based on cellular concrete and their performances [J]. Integrated Intelligent Energy, 2024, 46(3): 29-34. |
[7] | MENG Qiang, YANG Yang, XIONG Yaxuan. Study on thermal stability of molten salt composites added with SiO2 nanoparticles [J]. Integrated Intelligent Energy, 2023, 45(9): 32-39. |
[8] | LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong. Modified active disturbance rejection control on the post-combustion CO2 capture system [J]. Integrated Intelligent Energy, 2023, 45(8): 18-25. |
[9] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[10] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
[11] | SUN Jian, QIN Yu, HAO Junhong, YANG Yongping. Performance analysis on high temperature air source heat pump coupling cycle based on industrial waste heat [J]. Integrated Intelligent Energy, 2023, 45(7): 40-47. |
[12] | HAN Chaobing, TANG Bing, YIN Ruilin, ZHU Zhengxiang, XUE Minghua, ZHU Jianfei, AI Chunmei, SUN Li. Research on modeling and characteristic simulation of a typical integrated energy system [J]. Integrated Intelligent Energy, 2023, 45(6): 49-58. |
[13] | ZHAO Guotao, QIAN Guoming, SUN Yanbing, DING Quan, ZHU Haidong. Application of carbon-escape accounting system in integrated energy systems' low-carbon evaluation [J]. Integrated Intelligent Energy, 2023, 45(6): 73-80. |
[14] | SU Yanxin, WANG Xuetao, XING Lili, LI Haojie, ZHANG Xingyu. Effect of precursors on pine sawdust steam reforming over Ni/ZSM-5 catalyst for hydrogen production [J]. Integrated Intelligent Energy, 2023, 45(5): 32-38. |
[15] | SHANG Yongqiang, WANG Wenfeng, WANG Weishu, GUO Jiawei, ZHENG Haonan, GE Xuewen. Analysis on the thermal insulation of long-distance steam heating pipes [J]. Integrated Intelligent Energy, 2023, 45(4): 47-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||