Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (12): 79-86.doi: 10.3969/j.issn.2097-0706.2023.12.010
• Optimal Operation and Control • Previous Articles
GENG Zhi1,2,3(), CHEN Keyu1, LIU Yuanyuan2, ZHANG Bin2, WANG Jianli2, SHI Tianqing2, LI Fang2, GU Yujiong4
Received:
2023-05-17
Revised:
2023-06-17
Published:
2023-12-25
Supported by:
CLC Number:
GENG Zhi, CHEN Keyu, LIU Yuanyuan, ZHANG Bin, WANG Jianli, SHI Tianqing, LI Fang, GU Yujiong. Complementarity analysis of solar energy and gas turbine combined cycle[J]. Integrated Intelligent Energy, 2023, 45(12): 79-86.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.12.010
[1] | 马敬凯. 太阳能热互补联合循环系统优化设计研究[D]. 北京: 华北电力大学, 2018. |
MA Jingkai. Study on optimal design of solar combined cycle system with thermal complementarity[D]. Beijing: North China Electric Power University, 2018. | |
[2] |
NEZAMMAHALLEH H. Exergy analysis of DSG parabolic trough collectors for the optimal integration with a combined cycle[J]. International Journal of Exergy, 2015, 16(1): 72-96.
doi: 10.1504/IJEX.2015.067300 |
[3] | GÜLEN C, SMITH R W. Second law efficiency of the Rankine bottoming cycle of a combined cycle power plant[J]. Journal of Engineering for Gas Turbines and Power, 2008, 132(1):1017-1027. |
[4] |
MOHAMMAD A, MOHAMMAD M. Thermodynamic, thermoeconomic and life cycle assessment of a novel integrated solar combined cycle (ISCC) power plant[J]. Sustainable Energy Technologies and Assessments, 2018, 27: 192-205.
doi: 10.1016/j.seta.2018.04.011 |
[5] |
ROVIRA A, BARBERO R, MONTES J M, et al. Analysis and comparison of integrated solar combined cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems[J]. Applied Energy, 2016, 162:990-1000.
doi: 10.1016/j.apenergy.2015.11.001 |
[6] | 王树成, 付忠广, 张高强, 等. 基于先进㶲分析方法的太阳能燃气联合循环㶲损分析[J]. 太阳能学报, 2020, 41(11): 192-198. |
WANG Shucheng, FU Zhongguang, ZHANG Gaoqiang, et al. Analysis of combined cycle loss of solar energy and gas based on advanced analysis method[J]. Journal of Solar Energy, 2020, 41(11): 192-198. | |
[7] | 吕志鹏. 新型太阳能热互补联合循环发电系统研究[D]. 北京: 华北电力大学, 2018. |
LV Zhipeng. Research on a new solar-thermal complementary combined cycle power generation system[D]. Beijing: North China Electric Power University, 2018. | |
[8] | 杨谱. 太阳能燃气-蒸汽联合循环热互补发电系统建模及优化[D]. 北京: 华北电力大学, 2020. |
YANG Pu. Modeling and optimization of solar gas-steam combined cycle heat complementary power generation system[D]. Beijing: North China Electric Power University, 2020. | |
[9] | 曲万军. 基于燃气-蒸汽联合循环系统的太阳能热互补发电(ISCC)集成特性研究[D]. 北京: 华北电力大学, 2016. |
QU Wanjun. Study on the integration characteristics of an integrated solar combined cycle (ISCC)system[D]. Beijing: North China Electric Power University, 2016. | |
[10] | 林汝谋, 韩巍, 金红光, 等. 太阳能互补的联合循环(ISCC)发电系统[J]. 燃气轮机技术, 2013, 26(2): 1-15. |
LIN Rumou, HAN Wei, JIN Hongguang, et al. The integrated solar combined cycle power generation systems[J]. Gas Turbine Technology, 2013, 26(2): 1-15. | |
[11] | 谢坤. 塔式太阳能辅助燃气蒸汽联合循环系统研究[D]. 北京: 华北电力大学, 2018. |
XIE Kun. Research on tower solar-assisted gas-steam combined cycle system[D]. Beijing: North China Electric Power University, 2018. | |
[12] | 睢士贤. 光热集成燃气蒸汽联合循环发电系统的运行优化研究[D]. 吉林: 东北电力大学, 2020. |
SUI Shixian. Research on operation optimization of concentrated solar power thermal power generation system[D]. Jilin:Northeast Electric Power University, 2020. | |
[13] | 李猛. 基于太阳能与天然气互补的燃气轮机分布式供能系统研究[D]. 北京: 华北电力大学, 2019. |
LI Meng. Research on distributed energy supply system of gas turbine based on complementary solar energy and natural gas[D]. Beijing: North China Electric Power University, 2019. | |
[14] | 金宇航. 分级式太阳能-燃气轮机联合循环集成系统性能研究[D]. 北京: 华北电力大学, 2018. |
JIN Yuhang. Study on performance of integrated system of graded solar-gas turbine combined cycle[D]. Beijing: North China Electric Power University, 2018. | |
[15] | 王树坤. 太阳能与燃气联合循环系统的㶲分析与运行性能研究[D]. 吉林: 东北电力大学, 2022. |
WANG Shukun. Exergy analysis and operation behavior study of solar-gas combined cycle system[D]. Jilin:Northeast Electric Power University, 2022. | |
[16] |
ELMOHLAWYASHRAF E, OCHKOVVALERY F, KAZANDZHANBORIS I. Thermal performance analysis of a concentrated solar power system (CSP) integrated with natural gas combined cycle (NGCC) power plant[J]. Case Studies in Thermal Engineering, 2019, 14:100458.
doi: 10.1016/j.csite.2019.100458 |
[17] |
BRODRICK P G, BRANDT A R, DURLOFSKY LJ. Optimal design and operation of integrated solar combined cycles under emissions intensity constraints[J]. Applied Energy, 2018, 226:979-990.
doi: 10.1016/j.apenergy.2018.06.052 |
[18] | 李航行. 太阳能-燃气联合循环热电联产机组性能研究[D]. 北京: 华北电力大学, 2021. |
LI Hangxing. Study on the performance of solar-gas combined cycle cogeneration unit[D]. Bejing: North China Electric Power University, 2021. | |
[19] | 王刚, 曹勇, 王树坤, 等. ISCC分布式能源站的系统设计与初步分析[J]. 太阳能学报, 2021, 42(8): 66-70. |
WANG Gang, CAO Yong, WANG Shukun, et al. Design and preliminary analysis of ISCC distributed energy system[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 66-70. | |
[20] | 杨谱, 段立强, 潘盼. ISCC发电系统研究进展[J]. 华电技术, 2020, 42(4): 47-56. |
YANG Pu, DUAN Liqiang, PAN Pan. Research progress in ISCC power generation system[J]. Huadian Technology, 2020, 42(4): 47-56. | |
[21] | 祖航, 王秋颖. 环境温度及负荷率对燃气-蒸汽联合循环热电联产机组性能的影响[J]. 华电技术, 2019, 41(11): 49-52. |
ZU Hang, WANG Qiuying. Effects of ambient temperature and load ratio on performance of gas-steam combined cycle cogeneration units[J]. Huadian Technology, 2019, 41(11): 49-52. | |
[22] |
孙健, 秦宇, 王寅武, 等. 基于热网驱动的综合能源新型空气源高温热水机组性能研究[J]. 综合智慧能源, 2022, 44(7): 33-39.
doi: 10.3969/j.issn.2097-0706.2022.07.004 |
SUN Jian, QIN Yu, WANG Yinwu, et al. Study on the performance of new air-source high-temperature hot water units driven by heat supply network in integrated energy systems[J]. Integrated Intelligent Energy, 2022, 44(7): 33-39.
doi: 10.3969/j.issn.2097-0706.2022.07.004 |
[1] | TONG Jialin, ZHANG Yan, LIU Wensheng, MAO Jianbo, YE Xuemin. Numerical simulation on co-combustion and alkali metal distribution in an opposed firing boiler mixed with sludge [J]. Integrated Intelligent Energy, 2024, 46(8): 50-58. |
[2] | SONG Jianjun, FU Kun, CHEN Meiqian. Simulation on the gas-solid flows and combustion in a multi-pass circulating fluidized bed based on computational particle fluid dynamics method [J]. Integrated Intelligent Energy, 2024, 46(8): 59-66. |
[3] | ZHANG Lidong, LI Pei, JIANG Tieliu, LI Qinwei, ZHANG Lei, XU Feng, MENG Xin. Numerical simulation on the wind blocking and speed increasing effect of trough solar arrays [J]. Integrated Intelligent Energy, 2024, 46(6): 1-7. |
[4] | LI Chunhua, ZHU Biao. Analysis on solar energy resources distribution of four provinces in northwestern China and long-term variation [J]. Integrated Intelligent Energy, 2024, 46(2): 75-81. |
[5] | LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong. Modified active disturbance rejection control on the post-combustion CO2 capture system [J]. Integrated Intelligent Energy, 2023, 45(8): 18-25. |
[6] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[7] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
[8] | HAN Chaobing, TANG Bing, YIN Ruilin, ZHU Zhengxiang, XUE Minghua, ZHU Jianfei, AI Chunmei, SUN Li. Research on modeling and characteristic simulation of a typical integrated energy system [J]. Integrated Intelligent Energy, 2023, 45(6): 49-58. |
[9] | SHANG Yongqiang, WANG Wenfeng, WANG Weishu, GUO Jiawei, ZHENG Haonan, GE Xuewen. Analysis on the thermal insulation of long-distance steam heating pipes [J]. Integrated Intelligent Energy, 2023, 45(4): 47-51. |
[10] | DOU Zihui, LIU Jingxia, LI Baoli. Study on the solar-assisted ground-source heat pump system with seasonal heat storage in cold regions [J]. Integrated Intelligent Energy, 2023, 45(4): 52-58. |
[11] | YUAN Tianzhi, CHEN Ruiwen, Dilari YASHENG, XU Luoyun, HU Sideng. Research of parameter selection and accuracy optimization on event-driven simulation method of DC-DC converters [J]. Integrated Intelligent Energy, 2023, 45(3): 41-49. |
[12] | ZHANG Jinping, ZHOU Qiang, WANG Dingmei, LI Jin, LIU Lijuan. Review on solar thermal power generation technologies and their development [J]. Integrated Intelligent Energy, 2023, 45(2): 44-52. |
[13] | JI Mingda, GOU Yujun, ZHONG Xiaohui. Performance simulation and analysis on photovoltaic and photothermal integration system in Baiyin area [J]. Integrated Intelligent Energy, 2023, 45(12): 43-52. |
[14] | LUO Liqi, WANG Yue, ZHONG Haijun, LI Qingxun, XIE Guangyuan, WANG Shaorong. Design of the CHP system integrated with SOFC [J]. Integrated Intelligent Energy, 2022, 44(8): 25-32. |
[15] | HU Chong, ZHAO Yuan, RAZA Ali, CHEN Daifen. Simulation and optimization for the PEMFC based on single-cell stack structure [J]. Integrated Intelligent Energy, 2022, 44(8): 91-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||