Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (8): 91-96.doi: 10.3969/j.issn.2097-0706.2022.08.010
• Technology Exchange • Previous Articles Next Articles
HU Chong(), ZHAO Yuan, RAZA Ali, CHEN Daifen*(
)
Received:
2022-06-20
Revised:
2022-07-30
Published:
2022-08-25
Contact:
CHEN Daifen
E-mail:hcspecial@163.com;dfchen@just.edu.cn
CLC Number:
HU Chong, ZHAO Yuan, RAZA Ali, CHEN Daifen. Simulation and optimization for the PEMFC based on single-cell stack structure[J]. Integrated Intelligent Energy, 2022, 44(8): 91-96.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.08.010
Table 2
Settings of the main parameters of the simulation[13]
项目 | 值 | 单位 | |
---|---|---|---|
操作温度 | 60 | ℃ | |
操作压力 | 101 325 | Pa | |
BP | 材料密度 | 1 990 | kg/m3 |
比热容 | 710 | J/(kg·K) | |
电导率 | 92 600 | S/m | |
热导率 | 120 | W/(m·K) | |
GDL | 材料密度 | 321.5 | kg/m3 |
电导率 | 280 | S/m | |
液水接触角 | 110 | (°) | |
孔隙率 | 0.6 | ||
渗透率 | 1.76×10-11 | m-2 | |
CL | 孔隙率 | 0.4 | |
渗透率 | 1.76×10-11 | m-2 | |
比表面积 | 1.127×107 | m-1 | |
PEM | 热导率 | 0.16 | W/(m·K) |
干膜密度 | 1 980 | kg/m3 | |
干膜当量质量 | 1 100 | kg/kmol | |
电化学反应相关参数 | 孔隙堵塞饱和度指数 | 2 | |
阳极浓度指数 | 1 | ||
阴极浓度指数 | 1 | ||
开路电压 | 1.05 | V | |
阳极参考浓度 | 0.881 4 | mol/m3 | |
阴极参考浓度 | 0.881 4 | mol/m3 | |
阳极电荷转移系数 | 1 | ||
阳极参考电流密度 | 7.17 | A/m2 | |
阴极电荷转移系数 | 1 | ||
阴极参考电流密度 | 7.17×10-5 | A/m2 |
Table 3
Governing equation
方程 | 公式及描述 |
---|---|
连续性方程 | 式中: |
动量方程 | 式中: |
组分方程 | 式中: |
液态水方程 | 式中: |
溶解态方程 | 式中: |
能量守恒方程 | 式中: |
电化学方程 | 式中: |
[1] | 郭天民. 准对称固体氧化物燃料电池电极材料的研究与表征[D]. 徐州: 中国矿业大学, 2019. |
[2] | 胡小夫, 汪洋, 田立, 等. 中高温SOFC/MGT联合发电技术研究进展[J]. 华电技术, 2019, 41(8): 1-5. |
HU Xiaofu, WANG Yang, TIAN Li, et al. Progress in intermediate and high temperature SOFC/MGT combined power generation technology[J]. Huadian Technology, 2019, 41(8): 1-5. | |
[3] |
郭雅婷, 邓甜音, 刘艳莹, 等. 碱性电解水制氢隔膜和阳极材料性能研究[J]. 综合智慧能源, 2022, 44(5): 64-68.
doi: 10.3969/j.issn.2097-0706.2022.05.007 |
GUO Yating, DENG Tianyin, LIU Yanying, et al. Research on the performance of membranes and anode materials in alkaline water electrolysis[J]. Integrated Intelligent Energy, 2022, 44(5): 64-68.
doi: 10.3969/j.issn.2097-0706.2022.05.007 |
|
[4] | 刘旺玉, 何芋钢, 罗远强, 等. 仿猪笼草结构的质子交换膜燃料电池流道设计[J]. 电源技术, 2022, 46(3): 280-283. |
LIU Wangyu, HE Yugang, LUO Yuanqiang, et al. Design of PEMFC flow channel imitating Nepenthes alata structure[J]. Chinese Journal of Power Sources, 2022, 46(3): 280-283 | |
[5] | 于建平, 魏慧利, 许思传. PEMFC蛇形流道几何结构的多目标优化[J]. 佳木斯大学学报(自然科学版), 2022, 40(1): 63-68. |
YU Jianping, WEI Huili, XU Sichuan. Multi-objective optimization of PEMFC serpentine flow channel geometry structure[J]. Journal of Jiamusi University (Natural Science Edition), 2022, 40(1): 63-68. | |
[6] | 陈佳浩, 苏丹丹, 梁玉娇, 等. 基于多物理场的PEMFC流场结构优化[J]. 电池工业, 2021, 25(6): 285-290. |
CHEN Jiahao, SU Dandan, LIANG Yujiao, et al. Optimization of flow field structure of PEMFC based on multiple physical fields[J]. Chinese Battery Industry, 2021, 25(6): 285-290. | |
[7] | 梁凤丽, 闻冉冉, 毛军逵, 等. PEMFC流道结构研究现状及发展趋势[J]. 南京航空航天大学学报, 2021, 53(4): 477-503. |
LIANG Fengli, WEN Ranran, MAO Junkui, et al. Status and development trend of PEMFC flow channel structure[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2021, 53(4): 477-503. | |
[8] |
KURNIA J C, SASMITO A P, SHAMIM T. Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions[J]. Applied Energy, 2017, 206: 751-764.
doi: 10.1016/j.apenergy.2017.08.224 |
[9] |
SURESH P V, JAYANTI S, DESHPANDE A P, et al. An improved serpentine flow field with enhanced cross-flow for fuel cell applications[J]. International Journal of Hydrogen Energy, 2011, 36(10) : 6067-6072.
doi: 10.1016/j.ijhydene.2011.01.147 |
[10] | 董琪琪. 质子交换膜燃料电池流道内促排水方法研究[D]. 西安: 西北工业大学, 2019. |
[11] | 王季康, 李华, 彭宇飞, 等. PEMFC建模及性能分析控制[J]. 电子测量技术, 2022, 45(8):27-34. |
WANG Jikang, LI Hua, PENG Yufei, et al. PEMFC modeling and performance analysis control[J]. Electronic Measurement Technology, 2022, 45(8):27-34. | |
[12] |
张立栋, 陈怡冰, 龚明, 等. 质子交换膜电解水制氢影响因素的过程模拟[J]. 综合智慧能源, 2022, 44(5): 88-94.
doi: 10.3969/j.issn.2097-0706.2022.05.010 |
ZHANG Lidong, CHEN Yibing, GONG Ming, et al. Process simulation of factors affecting proton exchange membrane water electrolysis for hydrogen production[J]. Integrated Intelligent Energy, 2022, 44(5): 88-94.
doi: 10.3969/j.issn.2097-0706.2022.05.010 |
|
[13] | 邹雨廷. 质子交换膜燃料电池动热质电耦合仿真研究与优化设计[D]. 镇江: 江苏科技大学, 2021. |
[1] | TONG Jialin, ZHANG Yan, LIU Wensheng, MAO Jianbo, YE Xuemin. Numerical simulation on co-combustion and alkali metal distribution in an opposed firing boiler mixed with sludge [J]. Integrated Intelligent Energy, 2024, 46(8): 50-58. |
[2] | SONG Jianjun, FU Kun, CHEN Meiqian. Simulation on the gas-solid flows and combustion in a multi-pass circulating fluidized bed based on computational particle fluid dynamics method [J]. Integrated Intelligent Energy, 2024, 46(8): 59-66. |
[3] | ZHANG Lidong, LI Pei, JIANG Tieliu, LI Qinwei, ZHANG Lei, XU Feng, MENG Xin. Numerical simulation on the wind blocking and speed increasing effect of trough solar arrays [J]. Integrated Intelligent Energy, 2024, 46(6): 1-7. |
[4] | FENG Ji, YANG Guohua, SHI Lei, PAN Huan, LU Yuxiang, ZHANG Yuanxi, LI Zhen. Research on fault diagnosis of active distribution network based on parallel fusion deep residual shrinkage network [J]. Integrated Intelligent Energy, 2024, 46(6): 8-15. |
[5] | ZHU Weiwei, ZHU Qing, GAO Wensen, LIU Caihua, WANG Luze, LIU Zengji. Switching method for distribution network feeder automation system based on 5G communication delay [J]. Integrated Intelligent Energy, 2024, 46(5): 1-11. |
[6] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[7] | LI Pengzhen, JIA Bingke, LIU Yanhong, WU Zhenlong. Modified active disturbance rejection control on the post-combustion CO2 capture system [J]. Integrated Intelligent Energy, 2023, 45(8): 18-25. |
[8] | HE Shuwei, HAN Yinghui, XU Wenbin, ZHANG Yuanxun, SHAN Yulong, YU Yunbo. Simulation for CO2 emissions from private vehicles in Beijing under different energy strategies [J]. Integrated Intelligent Energy, 2023, 45(8): 26-35. |
[9] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
[10] | HAN Chaobing, TANG Bing, YIN Ruilin, ZHU Zhengxiang, XUE Minghua, ZHU Jianfei, AI Chunmei, SUN Li. Research on modeling and characteristic simulation of a typical integrated energy system [J]. Integrated Intelligent Energy, 2023, 45(6): 49-58. |
[11] | JIANG Yuchen, LI Qingyang, HU Xun. Research progress of biochar prepared by microwave pyrolysis technology [J]. Integrated Intelligent Energy, 2023, 45(5): 46-62. |
[12] | SHANG Yongqiang, WANG Wenfeng, WANG Weishu, GUO Jiawei, ZHENG Haonan, GE Xuewen. Analysis on the thermal insulation of long-distance steam heating pipes [J]. Integrated Intelligent Energy, 2023, 45(4): 47-51. |
[13] | YUAN Tianzhi, CHEN Ruiwen, Dilari YASHENG, XU Luoyun, HU Sideng. Research of parameter selection and accuracy optimization on event-driven simulation method of DC-DC converters [J]. Integrated Intelligent Energy, 2023, 45(3): 41-49. |
[14] | JI Mingda, GOU Yujun, ZHONG Xiaohui. Performance simulation and analysis on photovoltaic and photothermal integration system in Baiyin area [J]. Integrated Intelligent Energy, 2023, 45(12): 43-52. |
[15] | GENG Zhi, CHEN Keyu, LIU Yuanyuan, ZHANG Bin, WANG Jianli, SHI Tianqing, LI Fang, GU Yujiong. Complementarity analysis of solar energy and gas turbine combined cycle [J]. Integrated Intelligent Energy, 2023, 45(12): 79-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||