Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (9): 28-36.doi: 10.3969/j.issn.2097-0706.2024.09.004
• Source-Grid Coordination • Previous Articles Next Articles
WANG Xiaoyan1(), WU Shuquan2(
)
Received:
2024-05-17
Revised:
2024-06-12
Published:
2024-09-25
Supported by:
CLC Number:
WANG Xiaoyan, WU Shuquan. Research on capacity allocation for source-grid-load-storage systems based on improved PSO[J]. Integrated Intelligent Energy, 2024, 46(9): 28-36.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.09.004
[1] | 姜琦, 黄堃, 赵俊, 等. 基于遗传算法的主动配电网 “源网荷储”协调优化模型研究[J]. 电力与能源, 2020, 41(1): 1-5,19. |
JIANG Qi, HUANG Kun, ZHAO Jun, et al. Study on coordination optimization model of "source network load storage" of active distribution network based on genetic algorithm[J]. Power and Energy, 2020, 41(1): 1-5,19. | |
[2] | 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-9. |
SHU Yinbiao, ZHANG Zhigang, GUO Jianbo, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9. | |
[3] |
杨梅, 周喜超, 魏强, 等. 考虑经济效益目标的源网荷储综合能源系统动态最优能流优化研究[J]. 综合智慧能源, 2022, 44(11): 63-69.
doi: 10.3969/j.issn.2097-0706.2022.11.009 |
YANG Mei, ZHOU Xichao, WEI Qiang, et al. Study on dynamic optimal energy flow of a source-network-load-storage integrated energy system considering its economic benefit[J]. Integrated Intelligent Energy, 2022, 44(11): 63-69.
doi: 10.3969/j.issn.2097-0706.2022.11.009 |
|
[4] | 许洪强. 调控云架构及应用展望[J]. 电网技术, 2017, 41(10): 3104-3111. |
XU Hongqiang. Architecture of dispatching and control cloud and its application prospect[J]. Power System Technology, 2017, 41(10): 3104-3111. | |
[5] | 权然, 金国彬, 陈庆, 等. 源网荷储互动的直流配电网优化调度[J]. 电力系统及其自动化学报, 2021, 33(2): 41-50. |
QUAN Ran, JIN Guobin, CHEN Qing, et al. Optimal dispatch of DC distribution network with source network load storage interaction[J]. Proceedings of the CSU-EPSA, 2021, 33(2): 41-50. | |
[6] | 许洪强. 面向调控云的电力调度通用数据对象结构化设计及应用[J]. 电网技术, 2018, 42(7): 2248-2254. |
XU Hongqiang. Structured design and application of power dispatching universal data object for dispatching and control cloud[J]. Power System Technology, 2018, 42(7): 2248-2254. | |
[7] | 郝然, 艾芊, 肖斐. 基于多元大数据平台的用电行为分析构架研究[J]. 电力自动化设备, 2017, 37(8): 20-27. |
HAO Ran, AI Qian, XIAO Fei. Architecture based on multivariate big data platform for analyzing electricity consumption behavior[J]. Electric Power Automation Equipment, 2017, 37(8): 20-27. | |
[8] | 朱正元, 韦浩, 曾莉, 等. 基于网损最小的智能配电网 “源网荷”优化研究[J]. 浙江电力, 2020, 39(5): 61-65. |
ZHU Zhengyuan, WEI Hao, ZENG Li, et al. Optimization of "source network load" of intelligent distribution network based on minimum network loss[J]. Zhejiang Electric Power, 2020, 39(5): 61-65. | |
[9] | 谢飞, 夏锐. 基于动态差分和粒子群混合算法的含分布式电源配电网重构[J]. 黑龙江电力, 2018, 40(3): 221-226. |
XIE Fei, XIA Rui. Distribution network reconfiguration with distributed generation based on dynamic difference and particle swarm optimization[J]. Heilongjiang Electric Power, 2018, 40(3): 221-226. | |
[10] | 胡迪, 丁明, 毕锐, 等. 基于集群划分的网-源-储多目标两步规划[J]. 电力系统自动化, 2020, 44(2): 95-104. |
HU Di, DING Ming, BI Rui, et al. Two-step planning of grid-source-storage based on cluster partition[J]. Automation of Electric Power Systems, 2020, 44(2): 95-104. | |
[11] |
陆克, 李海山, 孟琳. 源网荷储互动调控对降低可再生能源发电弃电率的应用分析[J]. 储能科学与技术, 2020, 9(S1):39-44.
doi: 10.19799/j.cnki.2095-4239.2020.0201 |
LU Ke, LI Haishan, MENG Lin. Analysis of the reduction of discard rate for renewable energy power with "generation-grid-load-storage" interactive control[J]. Energy Storage Science and Technology, 2020, 9(S1):39-44.
doi: 10.19799/j.cnki.2095-4239.2020.0201 |
|
[12] | 李军, 陈利, 李华东, 等. 基于遗传算法的多机型多热源复杂热电负荷优化分配方法[J]. 节能技术, 2021, 39 (2):185-188. |
LI Jun, CHEN Li, LI Huadong, et al. Optimal allocation of complex thermal and electrical loads with multiple models and multiple heat sources based on genetic algorithms[J]. Energy Conservation Technology, 2021, 39(2):185-188. | |
[13] | 崔弘, 郭熠昀, 夏成军. 考虑环境效益的分布式电源优化配置研究[J]. 华东电力, 2010, 38(12): 1968-1971. |
CUI Hong, GUO Yiyun, XIA Chengjun. Research on optimal allocation of distributed generation by Considering Environmental Benefits[J]. East China Electric Power, 2010, 38(12): 1968-1971. | |
[14] | KENNEDY J, EBERHART R C. Particle swarm opti mization[C]// Proceedings of IEEE International Conference on Neural Networks,1995:1942-1948. |
[15] | EBERHART R C, SHI Y. A modified particle swarm optimizer[C]// Proceedings of IEEE International Conference on Evolutionary Computation, 1998: 69-73. |
[16] | CLERC M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization[C]// Proceedings of the Congress on Evolutionary Computation, 1999 :1951-1957. |
[17] | TRELEA C I. The particle swarm optimization algorithm: Convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85(6): 317-325. |
[18] | , AJIBADE S S M, ADEGOKE O. Bibliometric survey on particle swarm optimization algorithms (2001—2021)[J]. Journal of Electrical and Computer Engineering, 2022: 3242949. |
[19] |
王鑫, 陈祖翠, 卞在平, 等. 基于粒子群优化算法的智慧微电网风光储容量优化配置[J]. 综合智慧能源, 2022, 44(6): 52-58.
doi: 10.3969/j.issn.2097-0706.2022.06.006 |
WANG Xin, CHEN Zucui, BIAN Zaiping, et al. Optimal allocation of a wind-PV-battery hybrid system in smart microgrid based on particle swarm optimization algorithm[J]. Integrated Intelligent Energy, 2022, 44(6): 52-58.
doi: 10.3969/j.issn.2097-0706.2022.06.006 |
|
[20] | SUKRITI T, ASHWANI K. Advances and bibliographic analysis of particle swarm optimization applications in electrical power system: Concepts and variants[J]. Evolutionary Intelligence, 2021, 16(1): 23-47. |
[21] | 穆朝絮, 张瑞民, 孙长银. 基于粒子群优化的非线性系统最小二乘支持向量机预测控制方法[J]. 控制理论与应用, 2010, 27(2): 164-168. |
MU Chaoxu, ZHANG Ruimin, SUN Changyin. LS-SVM predictive control based on PSO for nonlinear systems[J]. Control Theory & Applications, 2010, 27(2): 164-168. | |
[22] | 陈虹, 孔力, 赵党军. 基于粒子群优化算法的极限环极值搜索控制[J]. 控制与决策, 2011, 26(6): 811-815. |
CHEN Hong, KONG Li, ZHAO Dangjun. Particle swarm optimization-based extremum seeking control for limit cycle minimization[J]. Control and Decision, 2011, 26(6): 811-815. | |
[23] | NAPOLES G, GRAU I, BELLO R. Particle swarm optimization with random sampling in variable neighbourhoods for solving global minimization problems[C]// Proceedings of the 8th International Conference on Swarm Intelligence, 2012, 7461(1): 352-353. |
[24] | YAZDANI D, NASIRI B, SEPAS-MOGHADDAM A, et al. A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization[J]. Applied Soft Computing Journal, 2013, 13(4): 77-93. |
[25] |
ZHANG S, XU J, LEE L H, et al. Optimal computing budget allocation for particle swarm optimization in stochastic optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(2): 206-219.
doi: 10.1109/TEVC.2016.2592185 pmid: 29170617 |
[26] | 谭辉, 戴小剑, 田家俊, 等. 改进粒子群算法在含DG 配电系统可靠性评估中的应用[J]. 湖北民族学院学报(自然科学版), 2019, 37(1): 104-108. |
TAN Hui, DAI Xiaojian, TIAN Jiajun, et al. Application of improved particle swarm optimization in reliability evaluation of distribution system with DG[J]. Journal of Hubei University for Nationalities(Natural Sciences Edition), 2019, 37(1): 104-108. | |
[27] |
侯鲁洋, 葛磊蛟, 王飚, 等. 面向新型产消者的综合能源系统和电力市场研究[J]. 综合智慧能源, 2022, 44(12): 40-48.
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
HOU Luyang, GE Leijiao, WANG Biao, et al. Research on the integrated energy system and the electricity market towards new prosumers[J]. Integrated Intelligent Energy, 2022, 44(12): 40-48.
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
|
[28] | 汤奕, 孙大松, 周毅, 等. 含分布式电源的主配一体化电网日前-实时协调风险调度方法研究[J]. 智慧电力, 2020, 48(8):8-14,23. |
TANG Yi, SUN Dasong, ZHOU Yi, et al. Coordinated day- ahead and real-time risk dispatch method for main distribution integrated network containing distributed generation[J]. Smart Power, 2020, 48(8):8-14,23. | |
[29] |
胡祖源, 靳现林, 谭雅之, 等. 基于改进粒子群算法的分布式光伏及储能系统优化配置[J]. 综合智慧能源, 2023, 45(1): 49-57.
doi: 10.3969/j.issn.2097-0706.2023.01.006 |
HU Zuyuan, JIN Xianlin, TAN Yazhi, et al. Optimized configuration of distributed photovoltaic and energy storage system based on improved particle swarm algorithm[J]. Integrated Intelligent Energy, 2023, 45(1): 49-57.
doi: 10.3969/j.issn.2097-0706.2023.01.006 |
|
[30] |
黄银恒, 李猛, 庞毅, 等. 区域综合能源系统容量配置和调度策略优化方法研究[J]. 综合智慧能源, 2023, 45(6): 34-41.
doi: 10.3969/j.issn.2097-0706.2023.06.005 |
HUANG Yinheng, LI Meng, PANG Yi, et al. Research on optimization method for capacity allocation and scheduling strategy of regional integrated energy systems[J]. Integrated Intelligent Energy, 2023, 45(6): 34-41.
doi: 10.3969/j.issn.2097-0706.2023.06.005 |
[1] | FAN Yanbo, XIONG Yaxuan, LI Xiang, TIAN Xi, YANG Yang. Advancement in multi-objective optimization for building energy use based on genetic algorithms [J]. Integrated Intelligent Energy, 2024, 46(9): 69-85. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[4] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[5] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[6] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[7] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[8] | WANG Yongxu, ZHOU Tianyu, DENG Genggeng, XU Gang, WANG Zhuo. Plant-level intelligent operation optimization for cogeneration units equipped with absorption heat pumps [J]. Integrated Intelligent Energy, 2024, 46(3): 20-28. |
[9] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[10] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[11] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[12] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[13] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[14] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[15] | QIAO Lihui, LI Mingche, ZHANG Rui, FANG Zongjie. Capacity configuration method for a battery-SMES hybrid energy storage system in a DC microgrid [J]. Integrated Intelligent Energy, 2023, 45(9): 59-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||