华电技术 ›› 2021, Vol. 43 ›› Issue (11): 49-57.doi: 10.3969/j.issn.1674-1951.2021.11.006
张媛媛1(), 叶灿滔1(
), 龚宇烈1,*(
), 马玖辰2(
), 黄永辉3(
), 赵军4(
), 庞忠和3(
)
收稿日期:
2021-08-16
修回日期:
2021-09-09
出版日期:
2021-11-25
通讯作者:
* 龚宇烈(1978—),男,江西进贤人,研究员,博士生导师,博士,从事地热能利用技术、热泵制冷技术、建筑节能技术等方面的研究(E-mail: gongyl@ms.giec.ac.cn)。作者简介:
张媛媛(1993—),女,河南商丘人,特别研究助理,博士,从事地下含水层储能研究、多孔介质中流动与传热特性等方面的研究(E-mail: zhangyy@ms.giec.ac.cn)。基金资助:
ZHANG Yuanyuan1(), YE Cantao1(
), GONG Yulie1,*(
), MA Jiuchen2(
), HUANG Yonghui3(
), ZHAO Jun4(
), PANG Zhonghe3(
)
Received:
2021-08-16
Revised:
2021-09-09
Published:
2021-11-25
摘要:
为了减缓全球变暖,实现碳达峰、碳中和目标及新能源的高效利用,需以新能源为主体的新型电力系统和储能行业相互协调发展。新型电力系统与地下储能相结合作为关键技术之一,其跨季节地下储能,尤其是地下含水层储能(ATES),从理论研究转为工程应用成为亟待攻克的难点。综述了地下储能方式及其原理,分析了地下ATES系统在数值模拟试验等方面的研究进展,深刻剖析了在实际工程应用中关键技术和瓶颈问题,进一步对比了地下ATES系统热工性能和经济环保效益评价标准,展望了新型电力系统与地下ATES相结合的未来,为后续的应用研究提供参考。
中图分类号:
张媛媛, 叶灿滔, 龚宇烈, 马玖辰, 黄永辉, 赵军, 庞忠和. 地下储能技术研究现状及发展[J]. 华电技术, 2021, 43(11): 49-57.
ZHANG Yuanyuan, YE Cantao, GONG Yulie, MA Jiuchen, HUANG Yonghui, ZHAO Jun, PANG Zhonghe. Review and prospect of underground thermal energy storage technology[J]. Huadian Technology, 2021, 43(11): 49-57.
表5
国内外ATES系统试验研究
试验系统 | 含水层厚度/m | 井数/个 | 周期 | 注水量 | 注水/采水温度/℃ | 参考文献 |
---|---|---|---|---|---|---|
深部承压含水层 | — | 1 | 51.0 d | 45.210 0 m3/h | 55.00/33.00 | [ |
第二承压含水层 | 19.0~26.0 | >2 | ≥46.0 d | — | 28.78/12.68 | [ |
含水层砂箱 | 1.0 | 2 | 23.0 min | 0.136 0 m3/h | 45.00/— | [ |
承压含水层(室内) | 0.8 | 2 | 120.0 min | 0.097 7 m3/h | — | [ |
含水层自然横流抽灌井群 | 0.4 | 5 | — | ≥0.240 0 m3/h | 12.00/7.00 | [38-39] |
承压含水层 | 67.0 | >2 | 150.0 d | 0.103 0 m3/min | — | [ |
含水层砂箱 | 0.2 | ≥2 | 9.6 h | 1.200 0 m3/s | 14.50/— | [ |
表6
储能式综合能源技术应用实例
国家 | 年份 | 储能目的 | 井数/个 | 井深/m | 容量/MW | 冷/热水温度/℃ | 供应场合 |
---|---|---|---|---|---|---|---|
挪威 | 1998 | 供暖+空调 | 18 | 45 | 7.0 | — | 医院 |
德国 | 1999 | 供暖+空调 | 12 | 300 | — | —/19.0 | 会议大厦 |
比利时 | 2000 | 供暖+空调 | 2 | 65 | 1.2 | 8.0/18.0 | 医院 |
加拿大 | 2002 | 供暖+空调 | 2 | — | 1.8 | 10.0/60.0 | 温室 |
德国 | 2005 | 供暖 | 2 | 1 250 | 3.3 | —/55.0 | 区域供暖 |
中国 | 2010 | 供暖+空调 | 3 | — | — | —/26.3 | 青少年宫 |
日本 | 2011 | 供暖+空调 | 5 | 50 | — | — | 大学 |
英国 | 2013 | 供暖+空调 | 8 | 70 | 2.9 | — | 住宅 |
荷兰 | 2015 | 供暖+空调 | 7 | — | 20.0 | — | 区域供暖 |
中国 | 2016 | 供暖+空调 | 2 | — | — | 10.0/43.0 | 工厂 |
[1] | GALLO A B, SIMOES-MOREIRA J R, COSTA H K M, et al. Energy storage in the energy transition context:A technology review[J]. Renewable & Sustainable Energy Reviews, 2016, 65:800-822. |
[2] |
WESSELINK M, LIU W, KOORNNEEF J, et al. Conceptual market potential framework of high temperature aquifer thermal energy storage—A case study in the Netherlands[J]. Energy, 2018, 147:477-489.
doi: 10.1016/j.energy.2018.01.072 |
[3] | PAUL F, BA S G, INGRID S, et al. Worldwide application of aquifer thermal energy storage—A review[J]. Renewable & Sustainable Energy Reviews, 2018, 94:861-876. |
[4] |
DINCER I. Thermal energy storage systems as a key technology in energy conservation[J]. International Journal of Energy Research, 2002, 26(7):567-588.
doi: 10.1002/(ISSN)1099-114X |
[5] | LI G. Sensible heat thermal storage energy and exergy performance evaluations[J]. Renewable & Sustainable Energy Reviews, 2016, 53:897-923. |
[6] |
CALISKAN H, DINCER I, HEPBASLI A. Thermodynamic analyses and assessments of various thermal energy storage systems for buildings[J]. Energy Conversion and Management, 2012, 62:109-122.
doi: 10.1016/j.enconman.2012.03.024 |
[7] | 王锦程, 万曼影, 马捷. 地下含水层储能技术的应用条件及其关键科学问题[J]. 能源研究与信息, 2003, 19(4):229-235. |
WANG Jincheng, WAN Manying, MA Jie. Conditions for the application of aquifer energy storage and related crucial problems[J]. Energy Research and Information, 2003, 19(4):229-235. | |
[8] | 刘毅. 上海市地面沉降防治措施及其效果[J]. 火山地质与矿产, 2000, 21(2):107-111. |
LIU Yi. Preventive measures for Shanghai land subsidence and their effects(China)[J]. Volcanology & Mineral Resources, 2000, 21(2):107-111. | |
[9] | ANDERSSON O, SELLBERG B. Swedish ATES applications:Experiences after ten years of development [C]//27th Intersociety Energy Conversion Engineering Conference, 1992. |
[10] | WILLEMSEN A, BAKEMA G, SNIJDERS A L. Status of cold storage in aquifers in the netherlands in 1994 [C]//Proceedings of International Symposium on Aquifer Thermal Energy Storage.Tuscaloosa,Alabama,US, 1995:41-61. |
[11] | 倪龙, 荣莉, 马最良. 含水层储能的研究历史及未来[J]. 建筑热能通风空调, 2007, 26(1):18-24. |
NI Long, RONG Li, MA Zuiliang. The history and future of aquifer thermal energy storage[J]. Building Energy & Environment, 2007, 26(1):18-24. | |
[12] |
FLEUCHAUS P, SCHÜPPLER S, BLOEMENDAL M, et al. Risk analysis of High-Temperature Aquifer Thermal Energy Storage(HT-ATES)[J]. Renewable and Sustainable Energy Reviews, 2020, 133.DOI:/ 10.1016/j.rser.2020.110153.
doi: 10.1016/j.rser.2020.110153 |
[13] | 黄永辉, 庞忠和, 程远志, 等. 深层含水层地下储热技术的发展现状与展望[J]. 地学前缘, 2020, 27(1):21-28. |
HUANG Yonghui, PANG Zhonghe, CHENG Yuanzhi, et al. The development and outlook of the deep aquifer thermal energy storage(deep-ATES)[J]. Earth Science Frontiers, 2020, 27(1):21-28. | |
[14] | DRIJVER B, AARSSEN M V, ZWART B D. High-Temperature Aquifer Thermal Energy Storage(HT-ATES)sustainable and multi-usable [C]//Innostock 2012,The 12th International Conference on Energy Storage.Lleida,Spain, 2012. |
[15] | 邬小波, 孟超. 地下含水层储能技术探讨[J]. 暖通空调, 2021, 51(6):93-96. |
WU Xiaobo, MENG Chao. Discussion on aquifer thermal storage technology[J]. Heating Ventilating & Air Conditioning, 2021, 51(6):93-96. | |
[16] | 龙翔, 万曼影, 马捷. 含水层储能技术的应用及储能条件的分析[J]. 能源工程, 2005(1):42-44. |
LONG Xiang, WAN Manying, MA Jie. The application of ATES and its condition for energy storage[J]. Energy Engineering, 2005(1):42-44. | |
[17] | PINEL P, CRUICKSHANK C A, BEAUSOLEIL-MORRISON I, et al. A review of available methods for seasonal storage of solar thermal energy in residential applications[J]. Renewable & Sustainable Energy Reviews, 2011, 15(7):3341-3359. |
[18] |
XU J, WANG R Z, LI Y. A review of available technologies for seasonal thermalenergy storage[J]. Solar Energy, 2014, 103:610-638.
doi: 10.1016/j.solener.2013.06.006 |
[19] |
HENNESSY J, LI H, WALLIN F, et al. Flexibility in thermal grids:A review of short-term storage in district heating distribution networks[J]. Energy Procedia, 2019, 158:2430-2434.
doi: 10.1016/j.egypro.2019.01.302 |
[20] |
ZHOU X Z, XU Y J, ZHANG X J, et al. Large scale underground seasonal thermal energy storage in China[J]. Journal of Energy Storage, 2020, 33.DOI: 10.1016/j.est.2020.102026.
doi: 10.1016/j.est.2020.102026 |
[21] |
KIM J, LEE Y, YOON W S, et al. Numerical modeling of aquifer thermal energy storage system[J]. Energy, 2010, 35(12):4955-4965.
doi: 10.1016/j.energy.2010.08.029 |
[22] |
YAPPAROVA A, MATTHAEI S, DRIESNER T. Realistic simulation of an aquifer thermal energy storage:Effects of injection temperature,well placement and groundwater flow[J]. Energy, 2014, 76:1011-1018.
doi: 10.1016/j.energy.2014.09.018 |
[23] |
GHAEBI H, BAHADORI M N, SAIDI M H. Performance analysis and parametric study of thermal energy storage in an aquifer coupled with a heat pump and solar collectors,for a residential complex in Tehran,Iran[J]. Applied Thermal Engineering, 2014, 62(1):156-170.
doi: 10.1016/j.applthermaleng.2013.09.037 |
[24] |
JEON J S, LEE S R, PASQUINELLI L, et al. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well[J]. Energy, 2015, 90(3):1349-1359.
doi: 10.1016/j.energy.2015.06.079 |
[25] | 龙翔, 万曼影, 马捷. 地下水含水层储能的数学模型及其流动条件的研究[J]. 能源研究与利用, 2005(1):14-18. |
LONG Xiang, WAN Manying, MA Jie. Study on the mathematical model of aquifer thermal energy storage and its flow conditions[J]. Energy Research & Utilization, 2005(1):14-18. | |
[26] | 袁建伟, 王瑞祥, 袁东立. 井对间距对含水层采能区抽水温度的影响[J]. 建筑科学, 2009, 25(2):92-96. |
YUAN Jianwei, WANG Ruixiang, YUAN Dongli. Effects of well pair distance on pumping temperature of storage exploiting in the aquifer of water-source heat pump[J]. Building Science, 2009, 25(2):92-96. | |
[27] | 南新磊. 地下含水层储能系统的数值模拟与实验研究[D]. 阜新:辽宁工程技术大学, 2012. |
[28] |
VISSER P, KOOI H, STUYFZAND P J. The thermal impact of Aquifer Thermal Energy Storage(ATES) systems:A case study in the Netherlands,combining monitoring and modeling[J]. Hydrogeology Journal, 2015, 23(3):507-532.
doi: 10.1007/s10040-014-1224-z |
[29] | 燕旭辉. 基于Fluent的含水层储能系统温度场模拟分析及优化设计[D]. 北京:华北电力大学, 2019. |
[30] | 贾欣. 海水源热泵多井取水系统渗流换热特性研究[D]. 大连:大连理工大学, 2018. |
[31] | 万志军, 赵阳升, 康建荣, 等. 高温岩体地热开发的国际动态及其在中国的开发前景[C]//第八次全国岩石力学与工程学术大会论文集. 北京: 科学出版社, 2004:304-309. |
[32] |
MOLZ F J, WARMAN J C, JONES T E. Aquifer storage of heated water:Part I—A field experiment[J]. Groundwater, 1978, 16(4):234-241.
doi: 10.1111/gwat.1978.16.issue-4 |
[33] |
MOLZ F J, PARR A D, ANDERSEN P F, et al. Thermal energy storage in a confined aquifer:Experimental results[J]. Water Resources Research, 1979, 15(6):1509-1514.
doi: 10.1029/WR015i006p01509 |
[34] | 薛禹群, 谢春红, 李勤奋. 含水层贮热能研究——上海贮能试验数值模拟[J]. 地质学报, 1989(1):75-87. |
XUE Yuqun, XIE Chunhong, LI Qinfen. Research on aquifer thermal energy storage—Numerical simulation of Shanghai energy storage test[J]. Acta Geologica Sinica, 1989(1):75-87. | |
[35] |
XUE Y, XIE C, LI Q. Aquifer thermal energy storage:A numerical simulation of field experiments in China[J]. Water Resources Research, 1990, 26(10):2365-2375.
doi: 10.1029/WR026i010p02365 |
[36] | 张建栋, 马捷, 戴斌. 地下含水层储能的实验分析与模拟[J]. 能源技术, 2005(6):231-235. |
ZHANG Jiandong, MA Jie, DAI Bin. Experiment and simulation on the processes of aquifer's thermal energy storage[J]. Energy Technology, 2005(6):231-235. | |
[37] | 何朋朋. 含水层水热运移试验研究[D]. 北京:中国地质大学, 2011. |
[38] | 周学志, 高青. 抽/灌井场热贯通与含水层自然流动关联性实验研究[J]. 建筑科学, 2012(S2):189-194. |
ZHOU Xuezhi, GAO Qing. Experiment on the relevance of thermal breakthrough between pumping and injecting well groups with aquifer advection[J]. Building Science, 2012(S2):189-194. | |
[39] | 周学志. 抽灌井群地下水运移能量传输及其传热研究[D]. 长春:吉林大学, 2013. |
[40] |
SMITH D C, ELMORE A C. The observed effects of changes in groundwater flow on a borehole heat exchanger of a large scale ground coupled heat pump system[J]. Geothermics, 2018, 74:240-246.
doi: 10.1016/j.geothermics.2018.03.008 |
[41] | 马玖辰, 邵刚, 王宇, 等. 抽-灌井分布模式对地埋管换热器井群传热特性的影响[J]. 应用基础与工程科学学报, 2019, 27(5):217-230. |
MA Jiuchen, SHAO Gang, WANG Yu, et al. Influence of the distribution of pumping and injection wells on heat transfer characteristic of borehole heat exchangers[J]. Journal of Basic Science and Engineering, 2019, 27(5):217-230. | |
[42] | 马玖辰, 王文君, 王宇, 等. 含水层热-渗运移机理的地源热泵实验系统研发[J]. 实验室研究与探索, 2020, 39(11):88-93,151. |
MA Jiuchen, WANG Wenjun, WANG Yu, et al. Research and development of ground source heat pump experimental system based on the mechanism of aquifer groundwater seepage and heat transferring[J]. Research and Exploration in Laboratory, 2020, 39(11):88-93,151. | |
[43] |
BIRHANU Z K, KITTERD N O, KROGSTAD H E, et al. Temperature boundary conditions for ATES systems[J]. AIP Conference Proceedings, 2015, 1648(1).DOI: 10.1063/1.4912349.
doi: 10.1063/1.4912349 |
[44] | KALAISELVAM S, PARAMESHWARAN R. Seasonal thermal energy storage[M]. Netherlands:Elsevier Incorporated, 2014:145-162. |
[45] | VANHOUDT D, DESMEDT J, BAEL J V, et al. An aquifer thermal storage system in a Belgian hospital:Long-term experimental evaluation of energy and cost savings[J]. Energy & Buildings, 2011, 43(12):3657-3665. |
[46] | KABUS F, RICHLAK U, BEUSTER H. Saisonale speicherung von überschusswärme auseinem heizkraftwerk in einem aquifer in neubrandenburg [C]//Statusseminar Thermische Energiespeicherung.Freiburg,Germany, 2006. |
[47] | KABUS F, RICHLAK U, WOLFGRAMM M, et al. Aquifer-speicher neubrandenburg-betriebserfahrung über drei speicherzyklen [C]//DerGeothermiekongress,Karlsruhe,Germany, 2008. |
[48] | WONG B, SNIJDERS A, MCCLUNG L. Recent inter-seasonal underground thermal energy storage applications in Canada [C]//2006 IEEE EIC Climate Change Conference.Ottawa,Canada, 2006. |
[49] | 董晓敏, 柴雅彬, 顾新洲. 地下储能系统在天津市河西区青少年宫项目中的应用[J]. 海河水利, 2013(2):58-59. |
DONG Xiaomin, CHAI Yabin, GU Xinzhou. Application of underground energy storage system in the youth palace project in Hexi district,Tianjin[J]. Haihe Water Resources, 2013(2):58-59. | |
[50] | 中曽康壽, 崔林日, 坂井正頌, 等. 帯水層蓄熱空調システムの普及に向けた研究開発低GWP冷媒ターボ冷凍機を用いた経済性·環境性評価[C]// 日本冷凍空調学会年次大会講演論文集, 2018:815-818. |
[51] |
PAKSOY H O, ANDERSSON O, ABACI S. Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer[J]. Renewable Energy, 2000, 19(1/2):117-122.
doi: 10.1016/S0960-1481(99)00060-9 |
[52] |
KUNKEL C, AGEMAR T, STOBER I. Geothermisches nutzungspotenzial der buntsandstein-und keuperaquifere im nordosten bayerns mit fokus auf tiefe aquiferspeicher[J]. Grundwasser, 2019, 24(4):251-267.
doi: 10.1007/s00767-019-00430-1 |
[53] |
HOLSTENKAMP L, MEISEL M, NEIDIG P, et al. Interdisciplinary review of medium-deep aquifer thermal energy storage in north germany[J]. Energy Procedia, 2017, 135:327-336.
doi: 10.1016/j.egypro.2017.09.524 |
[54] |
FLEUCHAUS P, SCHUEPPLER S, GODSCHALK B, et al. Performance analysis of aquifer thermal energy storage (ATES)[J]. Renewable Energy, 2020, 146(2):1536-1548.
doi: 10.1016/j.renene.2019.07.030 |
[55] |
SCHOUT G, DRIJVER B, GUTIERREZ-NERI M, et al. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage:A Rayleigh-based method[J]. Hydrogeology Journal, 2014, 22:281-291.
doi: 10.1007/s10040-013-1050-8 |
[56] |
LAPWOOD E. Convection of a fluid in a porous medium[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1948, 44(4):508-521.
doi: 10.1017/S030500410002452X |
[57] | BUIK N, GUTIERREZ-NERI M, DRIJVER B. Analysis of recovery efficiency in a high-temperature energy storage system [C]//NCB, 2011. |
[58] | BLOEMENDAL M, HARTOG N. After the boom;Evaluation of dutch ATES—System for energy efficiency [C]//European Geothermal Congress, 2016. |
[59] |
ABUASBEH M, ACUÑA J, LAZZAROTTO A, et al. Long term performance monitoring and KPIs' evaluation of Aquifer Thermal Energy Storage system in Esker formation:Case study in Stockholm[J]. Geothermics, 2021, 96(1).DOI: 10.1016/j.geothermics.2021.102166.
doi: 10.1016/j.geothermics.2021.102166 |
[60] | 孙方田, 郝宝如, 陈旭, 等. 基于喷射式换热的水热型地热集中供热系统效益分析[J]. 华电技术, 2020, 42(11):39-43. |
SUN Fangtian, HAO Baoru, CHEN Xu, et al. Benefit analysis of hydrothermal geothermal central heating systems based on ejector heat exchangers[J]. Huadian Technology, 2020, 42(11):39-43. | |
[61] | 夏勇其, 吴祈宗. 一种混合型多属性决策问题的TOPSIS方法[J]. 系统工程学报, 2004(6):630-634. |
XIA Yongqi, WU Qizong. A technique of order preference by similarity to ideal solution for hybrid multiple attribute decision making problems[J]. Journal of System Engineering, 2004(6):630-634. |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[3] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[4] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[5] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[6] | 缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67. |
[7] | 王永旭, 周天羽, 邓庚庚, 徐钢, 王卓. 配置吸收式热泵的热电联产机组厂级智能运行优化[J]. 综合智慧能源, 2024, 46(3): 20-28. |
[8] | 陆文甜. 基于增量交换的主动配电网分布式多目标最优潮流[J]. 综合智慧能源, 2024, 46(2): 43-48. |
[9] | 方刚, 王静, 张波波, 王俊哲. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55. |
[10] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[11] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[12] | 刘天阳, 高亚静, 谢典, 赵良. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52. |
[13] | 滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63. |
[14] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
[15] | 王永真, 韩艺博, 韩恺, 韩俊涛, 宋阔, 张兰兰. 基于知识图谱的数据中心综合能源系统研究综述[J]. 综合智慧能源, 2023, 45(7): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||