综合智慧能源 ›› 2026, Vol. 48 ›› Issue (1): 34-42.doi: 10.3969/j.issn.2097-0706.2026.01.004
徐聪(
), 徐静静(
), 江婷(
), 薛东(
), 闫立辰(
)
收稿日期:2025-06-18
修回日期:2025-10-14
出版日期:2026-01-25
作者简介:徐聪(1989),女,高级工程师,博士,从事综合能源系统集成、运行优化等方面的研究,xucong@chec.com.cn;基金资助:
XU Cong(
), XU Jingjing(
), JIANG Ting(
), XUE Dong(
), YAN Lichen(
)
Received:2025-06-18
Revised:2025-10-14
Published:2026-01-25
Supported by:摘要:
近年来,物联网、大数据和人工智能等数字化技术的快速发展给综合能源系统(IES)运行优化带来了新方法。提出了基于数据驱动的IES运行优化方法,针对北方某自备能源站的产业园区,采用深度学习长短期记忆神经网络模型进行多元负荷联合预测和光伏发电功率预测,为能源站运行优化提供精准依据;通过数据驱动的机器学习算法对主要供能设备进行全工况建模;分别以能效、经济和综合效益指标为优化目标,利用粒子群优化算法求解,得到典型日运行优化结果。能效指标最优情况下,系统综合能源利用率达83.0%,运行成本为64 802元;经济指标最优情况下,系统运行成本低至64 590元,综合能源利用率为79.3%;综合效益最优情况下,与能源站实际运行情况相比,综合能源利用率提升了7.5%,运行成本节约了6 444元。结果表明,本运行优化方法对指导IES运行优化具有实际应用意义。
中图分类号:
徐聪, 徐静静, 江婷, 薛东, 闫立辰. 数据驱动的综合能源系统运行优化研究[J]. 综合智慧能源, 2026, 48(1): 34-42.
XU Cong, XU Jingjing, JIANG Ting, XUE Dong, YAN Lichen. Research on data-driven operation optimization of integrated energy systems[J]. Integrated Intelligent Energy, 2026, 48(1): 34-42.
| [1] | 谢小瑜. 可再生能源超短期发电功率预测的深度学习方法研究[D]. 广州: 华南理工大学, 2021. |
| XIE Xiaoyu. Research on deep learning method for ultra-short-term power prediction of renewable energy[D]. Guangzhou: South China University of Technology, 2021. | |
| [2] |
CHENG W Y Y, LIU Y B, BOURGEOIS A J, et al. Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation[J]. Renewable Energy, 2017, 107: 340-351.
doi: 10.1016/j.renene.2017.02.014 |
| [3] | MA T, YANG H X, LU L. Solar photovoltaic system modeling and performance prediction[J]. Renewable & Sustainable Energy Reviews, 2014, 36: 304-315. |
| [4] |
KAVASSERI R G, SEETHARAMAN K. Day-ahead wind speed forecasting using f-ARIMA models[J]. Renewable Energy, 2009, 34(5): 1388-1393.
doi: 10.1016/j.renene.2008.09.006 |
| [5] | 王彩霞, 鲁宗相, 乔颖, 等. 基于非参数回归模型的短期风电功率预测[J]. 电力系统自动化, 2010, 34(16): 78-82, 91. |
| WANG Caixia, LU Zongxiang, QIAO Ying, et al. Short-term wind power forecast based on non-parametric regression model[J]. Automation of Electric Power Systems, 2010, 34(16): 78-82, 91. | |
| [6] |
GUAN C, LUH P B, MICHEL L D, et al. Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation[J]. IEEE Transactions on Power Systems, 2013, 28(4): 3806-3817.
doi: 10.1109/TPWRS.2013.2264488 |
| [7] | BAE K Y, JANG H S, SUNG D K. Hourly solar irradiance prediction based on support vector machine and its error analysis[J]. IEEE Transactions on Power Systems, 2017: 32(2): 935-945. |
| [8] |
HERNÁNDEZ L, BALADRÓN C, AGUIAR J M, et al. Artificial neural network for short-term load forecasting in distribution systems[J]. Energies, 2014, 7(3): 1576-1598.
doi: 10.3390/en7031576 |
| [9] |
张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47(3): 32-46.
doi: 10.3969/j.issn.2097-0706.2025.03.004 |
| ZHANG Dongdong, SHAN Linke, LIU Tianhao. Application of artificial intelligence technology in data mining and power prediction of wind and photovoltaic power generation[J]. Integrated Intelligent Energy, 2025, 47(3): 32-46. | |
| [10] | 牛哲文, 余泽远, 李波, 等. 基于深度门控循环单元神经网络的短期风功率预测模型[J]. 电力自动化设备, 2018, 38(5): 36-42. |
| NIU Zhewen, YU Zeyuan, LI Bo, et al. Short-term wind power forecasting model based on deep gated recurrent unit neural network[J]. Electric Power Automation Equipment, 2018, 38(5): 36-42. | |
| [11] |
WEN L L, ZHOU K L, YANG S L, et al. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting[J]. Energy, 2019, 171: 1053-1065.
doi: 10.1016/j.energy.2019.01.075 |
| [12] | 张倩, 马愿, 李国丽, 等. 频域分解和深度学习算法在短期负荷及光伏功率预测中的应用[J]. 中国电机工程学报, 2019, 39(8): 2221-2230. |
| ZHANG Qian, MA Yuan, LI Guoli, et al. Application of frequency domain decomposition and deep learning algorithm in short-term load and photovoltaic power prediction[J]. Proceedings of the CSEE, 2019, 39(8): 2221-2230. | |
| [13] | 孙庆凯, 王小君, 张义志, 等. 基于LSTM和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化, 2021, 45(5): 63-70. |
| SUN Qingkai, WANG Xiaojun, ZHANG Yizhi, et al. Multiple load prediction of integrated energy system based on long short-term memory and multi-task learning[J]. Automation of Electric Power Systems, 2021, 45(5): 63-70. | |
| [14] |
WANG X, WANG S X, ZHAO Q Y, et al. A multi-energy load prediction model based on deep multi-task learning and ensemble approach for regional integrated energy systems[J]. International Journal of Electrical Power & Energy Systems, 2021, 126: 106583.
doi: 10.1016/j.ijepes.2020.106583 |
| [15] |
徐聪, 胡永锋, 张爱平, 等. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006 |
|
XU Cong, HU Yongfeng, ZHANG Aiping, et al. Day-to-day forecasting of multi-load in comprehensive energy system based on feature screening[J]. Integrated Intelligent Energy, 2024, 46(3): 45-53.
doi: 10.3969/j.issn.2097-0706.2024.03.006 |
|
| [16] | WANG B, ZHANG L M, MA H R, et al. Parallel LSTM-based regional integrated energy system multienergy source-load information interactive energy prediction[J]. Complexity, 2019: 2019: 7414318. |
| [17] |
LI K, MU Y C, YANG F, et al. Joint forecasting of source-load-price for integrated energy system based on multi-task learning and hybrid attention mechanism[J]. Applied Energy, 2024, 360: 122821.
doi: 10.1016/j.apenergy.2024.122821 |
| [18] | 陈龙, 韩中洋, 赵珺, 等. 数据驱动的综合能源系统运行优化方法研究综述[J]. 控制与决策, 2021, 36(2): 283-294. |
| CHEN Long, HAN Zhongyang, ZHAO Jun, et al. Summary of research on operation optimization methods of data-driven integrated energy system[J]. Control and Decision, 2021, 36(2): 283-294. | |
| [19] |
LIU J Y, SHI D L, LI G N, et al. Data-driven and association rule mining-based fault diagnosis and action mechanism analysis for building chillers[J]. Energy and Buildings, 2020, 216: 109957.
doi: 10.1016/j.enbuild.2020.109957 |
| [20] | YANG Y P, LI X E, YANG Z P, et al. The application of cyber physical system for thermal power plants: Data-driven modeling[J]. Energies, 2018, 11(4): 11040690. |
| [21] |
LI X E, WANG N L, WANG L G, et al. A data-driven model for the air-cooling condenser of thermal power plants based on data reconciliation and support vector regression[J]. Applied Thermal Engineering, 2018, 129: 1496-1507.
doi: 10.1016/j.applthermaleng.2017.10.103 |
| [22] | 杨挺, 赵黎媛, 王成山. 人工智能在电力系统及综合能源系统中的应用综述[J]. 电力系统自动化, 2019, 43(1): 2-14. |
| YANG Ting, ZHAO Liyuan, WANG Chenshan. Review on application of artificial intelligence in power system and integrated energy system[J]. Automation of Electric Power Systems, 2019, 43(1): 2-14. | |
| [23] |
REYNOLDS J, AHMAD M W, REZGUI Y, et al. Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm[J]. Applied Energy, 2019, 235: 699-713.
doi: 10.1016/j.apenergy.2018.11.001 |
| [24] |
ANAND H, NARANG N, DHILLON J S. Multi-objective combined heat and power unit commitment using particle swarm optimization[J]. Energy, 2019, 172: 794-807.
doi: 10.1016/j.energy.2019.01.155 |
| [25] | 李玉凯, 韩佳兵, 于春浩, 等. 基于随机森林和长短期记忆网络多元负荷预测的综合能源三层规划调度[J]. 现代电力, 2021, 38(6): 695-703. |
| LI Yukai, HAN Jiabing, YU Chunhao, et al. Three-layer planning and dispatching of comprehensive energy based on multi-load forecasting of random forest and long-term and short-term memory network[J]. Modern Electric Power, 2021, 38(6): 695-703. | |
| [26] |
欧阳斌, 袁志昌, 陆超, 等. 考虑源-荷-储多能互补的冷-热-电综合能源系统优化运行研究[J]. 发电技术, 2020, 41(1): 19-29.
doi: 10.12096/j.2096-4528.pgt.19100 |
| OUYANG Bin, YUAN Zhichang, LU Chao, et al. Study on optimal operation of cold-heat-electricity integrated energy system considering multi-energy complementarity of source-load-storage[J]. Power Generation Technology, 2020, 41(1): 19-29. |
| [1] | 潘雷, 丁云飞, 庞毅, 王宇璇, 陈建伟, 高瑞, 张立阳. 基于SC-SAC算法的REHMIS-IES优化调度策略[J]. 综合智慧能源, 2026, 48(1): 43-58. |
| [2] | 薛东, 徐静静, 江婷, 王晓海, 徐聪. 基于双重特征处理的园区综合能源系统供热负荷预测研究[J]. 综合智慧能源, 2026, 48(1): 59-66. |
| [3] | 窦翔, 李卓群, 张哲, 温鑫, 赵勃, 韩燕, 仲声. 基于CNN-BiLSTM-RF-KDE的综合能源系统负荷预测[J]. 综合智慧能源, 2025, 47(9): 60-70. |
| [4] | 谭甲群, 吕如轩, 鞠洪晋, 洪春雪, 肖海平, 雷兢, 韩振兴. 基于改进秃鹰搜索算法的风光火储综合能源系统优化调度策略研究[J]. 综合智慧能源, 2025, 47(8): 68-76. |
| [5] | 宋坤, 顾文波. 考虑不确定性的综合能源系统建模及优化研究进展[J]. 综合智慧能源, 2025, 47(7): 32-43. |
| [6] | 陈亮, 刘桂英, 粟时平, 唐长久, 王辰浩, 郭思桐. 基于双层网络PER-MADDPG算法的综合能源系统协调优化调度[J]. 综合智慧能源, 2025, 47(7): 44-54. |
| [7] | 邢作霞, 赵子逸, 孙浩, 张鹏飞, 付启桐. 基于电制氢多级利用的综合能源系统低碳经济运行优化研究[J]. 综合智慧能源, 2025, 47(7): 71-81. |
| [8] | 张德斌, 林文野, 何梓轩, 岳心如, 宋文吉, 冯自平, FARID Mohammed Mehdi, USHAK DE GRAGEDA Svetlana Nikolaevna. 计及广义储能的建筑产消者社区综合能源系统日前调度优化[J]. 综合智慧能源, 2025, 47(7): 82-92. |
| [9] | 陈浩, 马刚, 钱达, 马健, 彭乐瑶. 绿证-碳交易机制下考虑阶梯需求响应的区域综合能源系统优化调度[J]. 综合智慧能源, 2025, 47(5): 21-30. |
| [10] | 季振亚, 郑帅帅, 许金星, 刘晓峰, 包宇庆. 计及碳-绿证联合交易的含需求响应的综合能源系统调度[J]. 综合智慧能源, 2025, 47(5): 41-50. |
| [11] | 郝宁, 张天博, 蒋励. 考虑储能运营商的工业企业综合能源系统运行优化和利益分配研究[J]. 综合智慧能源, 2025, 47(4): 85-97. |
| [12] | 张冬冬, 李芳凝, 刘天皓. 新型电力系统负荷预测关键技术及多元场景应用[J]. 综合智慧能源, 2025, 47(3): 47-61. |
| [13] | 江美慧, 许镇江, 牛统科, 朱虹谕, 李想. 考虑综合需求响应的矿区综合能源系统日内多时间尺度滚动优化调度[J]. 综合智慧能源, 2025, 47(3): 73-83. |
| [14] | 闫京, 李萌, 关宝良, 孟思宇, 樊颜搏, 王凤龙, 杨尚峰, 杨众杨, 熊亚选. 基于储能的寒冷地区住宅多能源供能多目标优化研究[J]. 综合智慧能源, 2025, 47(12): 46-56. |
| [15] | 范雨欣, 李永明, 苏雷. 面向电-气综合能源系统的协同虚假数据注入攻击建模[J]. 综合智慧能源, 2025, 47(11): 87-95. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

