综合智慧能源 ›› 2022, Vol. 44 ›› Issue (6): 37-44.doi: 10.3969/j.issn.2097-0706.2022.06.004
收稿日期:
2022-04-06
修回日期:
2022-05-19
出版日期:
2022-06-25
通讯作者:
*杨之乐(1987),男,副研究员,博士,从事人工智能方法在能源、电力、建筑、智能制造等领域的应用,数据驱动的智能优化和神经网络建模等计算智能方法研究, zl.yang@siat.ac.cn作者简介:
彭占磊(1996),男,在读硕士研究生,从事智能优化算法及其在电力系统中的应用研究, zl.peng@siat.ac.cn;基金资助:
PENG Zhanlei1(), YANG Zhile1,*(
), YANG Wenqiang2, LI Kang3(
)
Received:
2022-04-06
Revised:
2022-05-19
Published:
2022-06-25
摘要:
风电、光伏等新能源存在间歇性和波动性缺陷,难以实现大规模并网。电池储能技术具有响应速度快、调节精度高、环境友好、体积小且灵活等优点,是解决上述问题的关键技术。为加快推动电化学储能在电力系统中的应用,减少化石能源消耗,实现“碳达峰,碳中和”目标,对电化学储能在促进新能源消纳、调峰、调频等应用场景的容量配置和调度策略进行系统分析,总结归纳了电化学储能参与电力系统规划与运行的方法。最后指出,未来将基于人工智能技术对电化学储能参与的电力系统规划与运行问题进行求解优化,进一步提高电力系统的稳定性和可靠性。
中图分类号:
彭占磊, 杨之乐, 杨文强, 李慷. 电化学储能参与电力系统规划运行方法综述[J]. 综合智慧能源, 2022, 44(6): 37-44.
PENG Zhanlei, YANG Zhile, YANG Wenqiang, LI Kang. Review on planning and operation methods for power system with participation of electrochemical energy storage systems[J]. Integrated Intelligent Energy, 2022, 44(6): 37-44.
表1
电化学储能在各应用场景的规划运行方法
场景 | 方法 | 文献 |
---|---|---|
平抑波动 | 抗脉冲平均滤波 | [ |
一阶巴特沃思滤波 | [ | |
小波分解算法 | [ | |
离散傅里叶变换 | [ | |
经验模态分解 | [ | |
促进消纳 | 多目标进化算法 | [ |
调制蝙蝠算法(MBA) | [ | |
Cplex | [ | |
灰狼优化(GWO)算法 | [ | |
调峰 | 比例分摊法 | [ |
核密度估计 | [ | |
遗传算法 | [ | |
基于预测区间的削峰填谷控制策略 | [ | |
上层:序列二次规划;下层:内点法 | [ | |
Fréchet 算法 | [ | |
基于模拟退火的Q学习算法 | [ | |
粒子群优化 | [ | |
NSGAII | [ | |
调频 | 粒子群算法 | [ |
傅里叶变换 | [ | |
模糊自适应PID控制算法 | [ | |
调峰、调频 | Cplex | [ |
利用逆变器空闲容量 | [ |
[1] |
KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27:101047.
doi: 10.1016/j.est.2019.101047 |
[2] | 栗峰, 郝雨辰, 周昶, 等. 电网侧电化学储能调度运行及其关键技术[J]. 供用电, 2020, 37(6): 82-90. |
LI Feng, HAO Yuchen, ZHOU Chang, et al. Grid-side electrochemical energy storage dispatch operation and its key technologies[J]. Electricity Supply and Consumption, 2020, 37(6): 82-90. | |
[3] | 刘冰, 张静, 李岱昕, 等. 储能在发电侧调峰调频服务中的应用现状和前景分析[J]. 储能科学与技术, 2016, 5(6):909-914. |
LIU Bing, ZHANG Jing, LI Daixin, et al. Application status and prospect analysis of energy storage in power generation side peak and frequency regulation services[J]. Energy Storage Science and Technology, 2016, 5(6) :909-914. | |
[4] | 黎淑娟, 李爱魁, 黄际元, 等. 储能在高占比可再生能源系统中的应用及关键技术[J]. 供用电, 2020, 37(2):3-7. |
LI Shujuan, LI Aikui, HUANG Jiyuan, et al. Application and key technologies of energy storage in high-proportion renewable energy systems[J]. Electricity Supply and Consumption, 2020, 37(2): 3-7. | |
[5] |
MAH A, SBW A, PJK B, et al. Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues[J]. Journal of Energy Storage, 2021, 42:103023.
doi: 10.1016/j.est.2021.103023 |
[6] | HANNAN M A, FAISAL M, KER P J, et al. Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications[J]. Renewable and Sustainable Energy Reviews, 2020, 31:110022. |
[7] |
UDDIN M, ROMLIE M F, ABDULLAH M F, et al. A review on peak load shaving strategies[J]. Renewable Sustainable Energy Reviews, 2018, 82: 3323-3332.
doi: 10.1016/j.rser.2017.10.056 |
[8] |
ARANI A A K, GHAREHPETIAN G B, ABEDI M. Review on energy storage systems control methods in microgrids[J]. International Journal of Electrical Power, 2019, 107: 745-757.
doi: 10.1016/j.ijepes.2018.12.040 |
[9] |
MEXIS I, TODESCHINI G. Battery energy storage systems in the United Kingdom: A review of current state-of-the-art and future applications[J]. Energies, 2020, 13(14): 3616.
doi: 10.3390/en13143616 |
[10] |
FRATE G F, FERRARI L, DESIDERI U. Energy storage for grid-scale applications:Technology review and economic feasibility analysis[J]. Renewable Energy, 2020, 163:1754-1772.
doi: 10.1016/j.renene.2020.10.070 |
[11] | 牛阳, 张峰, 张辉, 等. 提升火电机组AGC性能的混合储能优化控制与容量规划[J]. 电力系统自动化, 2016, 40(10): 38-45. |
NIU Yang, ZHANG Feng, ZHANG Hui, et al. Hybrid energy storage optimal control and capacity planning to improve AGC performance of thermal power units[J]. Automation of Electric Power Systems, 2016, 40(10):38-45. | |
[12] |
YANG L, YANG Z, LI G, et al. Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation Uncertainties[J]. IEEE Transactions on Industrial Electronics, 2019, 66: 1565-1575.
doi: 10.1109/TIE.2018.2840498 |
[13] |
REDDY S S. Optimal scheduling of thermal-wind-solar power system with storage[J]. Renewable Energy, 2017, 101: 1357-1368.
doi: 10.1016/j.renene.2016.10.022 |
[14] | 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7): 17-23. |
TONG Jialin, HONG Qing, LYU Hongkun, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7): 17-23. | |
[15] | 徐国栋. 用于缓解电网调峰压力的储能系统规划方法综述[J]. 电力自动化设备, 2017, 37(8):3-11. |
XU Guodong. Overview of energy storage system planning methods for relieving power grid peaking pressure[J]. Electric Power Automation Equipment, 2017, 37(8):3-11. | |
[16] | 李兆伟, 方勇杰, 李威, 等. 电化学储能应用于电网频率安全防御三道防线的探讨[J]. 电力系统自动化, 2020, 44(8): 1-7. |
LI Zhaowei, FANG Yongjie, LI Wei, et al. Discussion on the application of electrochemical energy storage to the three lines of defense of power grid frequency security[J]. Automation of Electric Power Systems, 2020, 44(8): 1-7. | |
[17] |
ZHANG L, HU X, WANG Z, et al. Multiobjective optimal sizing of hybrid energy storage system for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2017, 67(2):1027-1035.
doi: 10.1109/TVT.2017.2762368 |
[18] | 韩海英. V2G参与电网调峰和调频控制策略研究[D]. 北京: 北京交通大学, 2011. |
[19] |
LIU Z, CHEN Y, ZHUO R, et al. Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling[J]. Applied Energy, 2017, 210:1113-1125.
doi: 10.1016/j.apenergy.2017.07.002 |
[20] | GHORBANI N, KASAEIAN A, TOOPSHEKAN A, et al. Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability[J]. Energy Conversion, 2017, 154: 581-591. |
[21] |
DAS M, SINGH M, BISWAS A. Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches :Case of a radio transmitter station in India[J]. Energy Conversion Management, 2019, 185: 339-352.
doi: 10.1016/j.enconman.2019.01.107 |
[22] | 苏庆贺. 考虑风功率波动和反调峰特性的混合储能容量优化研究[D]. 郑州: 郑州大学, 2019. |
[23] | 李学斌, 赵号, 李子申, 等. 一种基于维纳随机过程的风电场储能系统配置方法:201911380381. X[P]. 2021-07-09. |
[24] | 娄素华, 杨天蒙, 吴耀武, 等. 含高渗透率风电的电力系统复合储能协调优化运行[J]. 电力系统自动化, 2016, 40(7): 30-35. |
LOU Suhua, YANG Tianmeng, WU Yaowu, et al. Coordinated and optimized operation of composite energy storage in power system with high-penetration wind power[J]. Automation of Electric Power Systems, 2016, 40(7): 30-35. | |
[25] |
CHEN S X, GOOI H B, WANG M Q. Sizing of energy storage for microgrids[J]. IEEE transactions on smart grid, 2011, 3(1): 142-151.
doi: 10.1109/TSG.2011.2160745 |
[26] | 冯力勇, 张云. 考虑电池能效的电网侧电化学储能电站最优功率控制策略研究[J]. 华电技术, 2020, 42(4): 37-41. |
FENG Liyong, ZHANG Yun. Optimal power control strategy of grid-side electrochemical energy storage stations considering battery energy efficiency[J]. Huadian Technology, 2020, 42(4): 37-41. | |
[27] | 张家军, 陈杰, 常喜强, 等. 基于EMD与模型预测控制算法的风电功率平抑[J]. 四川电力技术, 2021, 44(2):38-42. |
ZHANG Jiajun, CHEN Jie, CHANG Xiqiang, et al. Wind power stabilization based on EMD and model predictive control algorithm[J]. Sichuan Electric Power Technology, 2021, 44(2):38-42. | |
[28] | LIANG L, ABDULKAREEM S S, REZVANI A, et al. Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty[J]. Journal of Energy 2020, 28(25):101306. |
[29] | 万玉良, 刘鑫, 吴晓丹, 等. 风电与多能源储能联合调峰多场景动态鲁棒优化模型[J]. 可再生能源, 2020, 38(5): 690-695. |
WAN Yuliang, LIU Xin, WU Xiaodan, et al. Multi-scenario dynamic robust optimization model for combined peak shaving of wind power and multi-energy energy storage[J]. Renewable Energy, 2020, 38(5): 690-695. | |
[30] | ZHANG W, MALEKI A, ROSEN M A, et al. Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage[J]. Energy Conversion, 2018, 163: 191-207. |
[31] | 张晓晨. 储能在电力系统调频调峰中的应用[D]. 北京: 北京交通大学, 2018. |
[32] | 张宏宇, 印永华, 申洪, 等. 大规模风电接入后的系统调峰充裕性评估[J]. 中国电机工程学报, 2011, 31(22): 26-31. |
ZHANG Hongyu, YIN Yonghua, SHEN Hong, et al. System peak shaving sufficiency assessment after large-scale wind power connection[J]. Chinese Journal of Electrical Engineering, 2011, 31(22): 26-31. | |
[33] | 陈昆灿. 电网侧电化学储能电站规模配置研究[J]. 国网技术学院学报, 2019, 22(4):25-28. |
CHEN Kuncan. Research on the scale configuration of grid-side electrochemical energy storage power station[J]. Journal of State Grid Technology College, 2019, 22(4):25-28. | |
[34] | 曹锐鑫, 张瑾, 朱嘉坤. 用户侧电化学储能装置最优系统配置与充放电策略研究[J]. 储能科学与技术, 2020, 9(6): 1890-1896. |
CAO Ruixin, ZHANG Jin, ZHU Jiakun. Research on the optimal system configuration and charging and discharging strategy of user-side electrochemical energy storage devices[J]. Energy Storage Science and Technology, 2020, 9(6): 1890-1896. | |
[35] | 饶宇飞, 高泽, 杨水丽, 等. 大规模电池储能调频应用运行效益评估[J]. 储能科学与技术, 2020, 9(6): 1829-1836. |
RAO Yufei, GAO Ze, YANG Shuili, et al. Operational benefit evaluation of large-scale battery energy storage frequency modulation application[J]. Energy Storage Science and Technology, 2020, 9(6):1829-1836. | |
[36] | 尚瑨, 邰能灵, 刘琦, 等. 采用区间控制的蓄电池储能电站调峰运行控制策略[J]. 电工技术学报, 2015, 30(16): 221-229. |
SHANG Jin, TAI Nengling, LIU Qi, et al. Peak shaving operation control strategy of battery energy storage power station using interval control[J]. Journal of Electrotechnical Technology, 2015, 30(16): 221-229. | |
[37] | 王冠亚. 电池储能参与电力系统调峰调频的建模与仿真[D]. 济南: 山东大学, 2019. |
[38] | 黎静华, 汪赛. 兼顾技术性和经济性的储能辅助调峰组合方案优化[J]. 电力系统自动化, 2017, 41(9): 44-50. |
LI Jinghua, WANG Sai. Optimization of energy storage-assisted peak shaving combination scheme considering both technical and economical aspects[J]. Automation of Electric Power Systems, 2017, 41(9): 44-50. | |
[39] | 雷敏, 华一飞, 赵洪山, 等. 计及电池寿命的电动汽车参与电网调峰策略[J]. 现代电力, 2020, 37(5):510-517. |
LEI Min, HUA Yifei, ZHAO Hongshan, et al. Grid peak regulation strategy for electric vehicles taking into account battery life[J]. Modern Electric Power, 2020, 37(5):510-517. | |
[40] | 王鑫. V2G模式下的电动汽车充放电优化调度策略研究[D]. 北京: 华北电力大学, 2021. |
[41] | 王静, 刘文霞, 李守强, 等. 计及机组降损收益的电源侧电池储能调频/调峰经济效益评价方法[J]. 电网技术, 2020, 44(11): 4236-4244. |
WANG Jing, LIU Wenxia, LI Shouqiang, et al. An economic benefit evaluation method for power-side battery energy storage frequency regulation/peak regulation considering unit loss reduction benefits[J]. Power Grid Technology, 2020, 44(11): 4236-4244. | |
[42] | 胡枭, 徐国栋, 尚策, 等. 工业园区参与调峰的电池储能-需求响应联合规划[J]. 电力系统自动化, 2019, 43(15): 116-123. |
HU Xiao, XU Guodong, SHANG Ce, et al. Battery energy storage-demand response joint planning for industrial park participation in peak shaving[J]. Automation of Electric Power Systems, 2019, 43(15): 116-123. | |
[43] | 赵嵩. 电池储能AGC控制性能评价标准的研究[D]. 大连: 大连理工大学, 2019. |
[44] | 张圣祺, 袁蓓, 徐青山, 等. 规模化储能参与下的电网二次调频优化控制策略[J]. 电力自动化设备, 2019, 39(5): 82-88. |
ZHANG Shengqi, YUAN Bei, XU Qingshan, et al. Optimal control strategy of power grid secondary frequency regulation with the participation of large-scale energy storage[J]. Electric Power Automation Equipment, 2019, 39(5): 82-88. | |
[45] | 孙冰莹. 储能辅助火电机组AGC调频运行方法及容量配置研究[D]. 北京: 华北电力大学, 2018. |
[46] | 胡泽春, 谢旭, 张放, 等. 含储能资源参与的自动发电控制策略研究[J]. 中国电机工程学报, 2014, 34(29): 5080-5097. |
HU Zechun, XIE Xu, ZHANG Fang, et al. Research on automatic power generation control strategy with the participation of energy storage resources[J]. Proceedings of the CSEE, 2014, 34(29): 5080-5097. | |
[47] | 丁明, 施建雄, 韩平平, 等. 光储系统参与电网调频及调峰的综合控制策略[J]. 中国电力, 2021, 54(1): 116-123. |
DING Ming, SHI Jianxiong, HAN Pingping, et al. Integrated control strategy for photovoltaic storage system to participate in power grid frequency regulation and peak regulation[J]. China Electric Power, 2021, 54(1): 116-123. | |
[48] | 孔昱凯, 温步瀛, 唐雨晨. 考虑辅助服务含储能区域电网运行优化[J]. 电气技术, 2021, 22(4): 26-32. |
KONG Yukai, WEN Buying, TANG Yuchen. Considering the optimization of regional power grid operation including auxiliary services and energy storage[J]. Electrical Technology, 2021, 22(4): 26-32. | |
[49] | 王凯丰, 谢丽蓉, 乔颖, 等. 电池储能提高电力系统调频性能分析[J]. 电力系统自动化, 2022, 46(1): 174-181. |
WANG Kaifeng, XIE Lirong, QIAO Ying, et al. Analysis of frequency regulation performance of power system improved by battery energy storage[J]. Electric Power System Automation, 2022, 46(1): 174-181. | |
[50] |
BUKAR A L, TAN C W, LAU K Y J S E. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm[J]. Solar Energy, 2019, 188: 685-696.
doi: 10.1016/j.solener.2019.06.050 |
[51] | 毛骁. 水-风-光-储微电网调峰模式与动态控制策略[D]. 广州: 广东工业大学, 2020. |
[52] | 刘畅. 考虑电网调峰需求的区域型主动配电系统调度学习优化[D]. 合肥: 合肥工业大学, 2019. |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 蔺家骏, 闫玮丹, 胡俊华, 郑一鸣, 邵先军, 郭炳延. 多模态知识图谱在电力运检中的应用与展望[J]. 综合智慧能源, 2024, 46(1): 65-74. |
[3] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[4] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[5] | 乔力晖, 李明澈, 张睿, 方宗杰. 直流微网蓄电池-SMES混合储能系统容量配置方法[J]. 综合智慧能源, 2023, 45(9): 59-64. |
[6] | 栗庆根, 孙娜, 董海鹰. 基于改进鲸鱼优化算法的共享储能优化配置研究[J]. 综合智慧能源, 2023, 45(9): 65-76. |
[7] | 刘天阳, 高亚静, 谢典, 赵良. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52. |
[8] | 滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63. |
[9] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
[10] | 王永真, 韩艺博, 韩恺, 韩俊涛, 宋阔, 张兰兰. 基于知识图谱的数据中心综合能源系统研究综述[J]. 综合智慧能源, 2023, 45(7): 1-10. |
[11] | 李宜哲, 王丹, 贾宏杰, 周天烁, 曹逸滔, 张帅, 刘佳委. 综合能源系统能量枢纽多样性建模和典型适用性研究[J]. 综合智慧能源, 2023, 45(7): 22-29. |
[12] | 杨波, 李成雲, 吕浩轩, 周博文, 李广地, 谷鹏. 基于多STA-GLN集成模型的电力系统暂态稳定评估方法[J]. 综合智慧能源, 2023, 45(7): 48-60. |
[13] | 黄银恒, 李猛, 庞毅, 梁茵, 靳增峰, 王金柱. 区域综合能源系统容量配置和调度策略优化方法研究[J]. 综合智慧能源, 2023, 45(6): 34-41. |
[14] | 刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6): 59-65. |
[15] | 赵国涛, 钱国明, 孙艳兵, 丁泉, 朱海东. 碳逸会计在综合能源系统低碳性评价中的应用[J]. 综合智慧能源, 2023, 45(6): 73-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||