综合智慧能源 ›› 2024, Vol. 46 ›› Issue (1): 28-37.doi: 10.3969/j.issn.2097-0706.2024.01.004
收稿日期:
2023-05-11
修回日期:
2023-07-15
出版日期:
2024-01-25
通讯作者:
*种道彤(1978),男,教授,博士,从事热力系统和多相流方面的研究,dtchong@mail.xjtu.edu.cn。作者简介:
田泽禹(1996),男,博士生,从事热力系统动态仿真与策略方面的研究,345395611@qq.com。
基金资助:
TIAN Zeyu(), SHA Zhaoyang, ZHAO Quanbin, YAN Hui, CHONG Daotong*(
)
Received:
2023-05-11
Revised:
2023-07-15
Published:
2024-01-25
Supported by:
摘要:
温控负载是一种变化剧烈、波动频繁、高峰负荷比例较高的负载,对电网的安全产生了极大的影响。为了应对这一问题,系统的输出功率往往会超过90%负荷最大值的调峰限制。针对虚拟电厂(VPP)系统内的超限过程进行了研究,并提出了2种控制策略,以降低超限总电量或者利用超限电量的同时获取收益。在验证策略的控制效果时,选取了2种由温控负载引起的功率需求的典型变化。研究结果表明,温控负载引起的功率需求峰值的变化对策略具有重要影响。在安全模式下,超限比例与峰值的增加呈反比,而与平均功率的增加呈正比;在收益模式下,峰值变化会影响储能放电过程,平均功率变化则会影响储能充电过程。随着功率需求的增加,收益逐渐减小,收益范围为3.62万~3.25万元。
中图分类号:
田泽禹, 沙钊旸, 赵全斌, 严卉, 种道彤. 针对温控负载变化的虚拟电厂控制策略研究[J]. 综合智慧能源, 2024, 46(1): 28-37.
TIAN Zeyu, SHA Zhaoyang, ZHAO Quanbin, YAN Hui, CHONG Daotong. Research on control strategy for virtual power plants in response to thermostatically controlled loads[J]. Integrated Intelligent Energy, 2024, 46(1): 28-37.
表2
基于收益的VPP协调控制策略控制计划
时间段 | 连入电网的储能组 | 电费 | 调度目的 |
---|---|---|---|
11:30—16:30 | C | 平值 | 电动公交车储能在谷电价时最大化充电,充电结束后储能组C剩余储能SOC=1 |
16:30—18:30 | A | 平值 | 储能车组A工作结束接入电网,同时此时段光伏机组输出功率下降,负载开始受到温控负载的影响,需求增大。为获得最大的收益,在此时段调度燃煤机组输出功率为额定功率,P=350 MW,储能组A充电,充电结束SOC,t=18:30 |
18:30—23:00 | A,C | 峰值 | 为获得最大收益,储能在峰值电价时段完全放电,此时段燃煤机组的输出功率信号为Ppeak。时段结束时,储能的设计容量剩余均为SOC=0.1,电池放电下限值 |
23:00—调峰时段结束 | C | 谷值 | 储能放电结束,但调峰时段仍在继续,需要满足系统功率需求,设定Pvalley= Pdemand,t=23:00为输出功率设定值 |
[1] | 艾芊. 双碳目标下虚拟电厂资源聚合与协同调控研究[J]. 电力工程技术, 2022, 41(6): 1. |
AI Qian. Research on resource aggregation and cooperative regulation of virtual power plant under dual carbon target[J]. Electric Power Engineering Technology, 2022, 41(6): 1. | |
[2] | 方燕琼, 艾芊, 范松丽. 虚拟电厂研究综述[J]. 供用电, 2016, 33(4): 8-13. |
FANG Yanqiong, AI Qian, FAN Songli. A review on virtual power plant[J]. Distribution & Utilization, 2016, 33(4): 8-13. | |
[3] |
NAVAL N, YUSTA J M. Virtual power plant models and electricity markets—A review[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111393.
doi: 10.1016/j.rser.2021.111393 |
[4] |
GOIA B, CIOARA T, ANGHEL I. Virtual power plant optimization in smart grids: A narrative review[J]. Future Internet, 2022, 14(5): 128.
doi: 10.3390/fi14050128 |
[5] | KALAF A A, ALYOZBAKY O S, ALGHANNAM A I. A modern technique to manage energy profile in Iraq: virtual power plant (VPP)[C]// Journal of Physics: Conference Series. IOP Publishing, 2021, 1973(1): 012078. |
[6] |
FAN S, LIU J, WU Q, et al. Optimal coordination of virtual power plant with photovoltaics and electric vehicles: A temporally coupled distributed online algorithm[J]. Applied Energy, 2020, 277: 115583.
doi: 10.1016/j.apenergy.2020.115583 |
[7] |
OSHNOEI A, KHERADMANDI M, BLAABJERG F, et al. Coordinated control scheme for provision of frequency regulation service by virtual power plants[J]. Applied Energy, 2022, 325: 119734.
doi: 10.1016/j.apenergy.2022.119734 |
[8] |
张伟, 罗世刚, 滕婕, 等. 考虑温控负荷聚合调控的新能源-储能联合规划[J]. 储能科学与技术, 2023, 12(6):1901-1912.
doi: 10.19799/j.cnki.2095-4239.2023.0054 |
ZHANG Wei, LUO Shigang, TENG Jie, et al. Joint planning of renewable energy and storage considering thermostatically controlled loads aggregation regulation[J]. Energy Storage Science and Technology, 2023, 12(6):1901-1912.
doi: 10.19799/j.cnki.2095-4239.2023.0054 |
|
[9] | 郭旭歆, 高赐威, 王朝亮, 等. 基于中央空调虚拟储能模型的调峰策略研究[J]. 电力需求侧管理, 2022, 24(4): 42-46. |
GUO Xuxing, GAO Ciwei, WANG Chaoliang, et al. Peak adjustment strategy based on central air conditioning virtual energy storage model[J]. Power Demand Side Management, 2022, 24(4): 42-46. | |
[10] |
KIM J, MULJADI E, GEVORGIAN V, et al. Capability‐coordinated frequency control scheme of a virtual power plant with renewable energy sources[J]. IET Generation, Transmission & Distribution, 2019, 13(16): 3642-3648.
doi: 10.1049/gtd2.v13.16 |
[11] |
CHAPALOGLOU S, NESIADIS A, ILIADIS P, et al. Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island's power system[J]. Applied Energy, 2019, 238: 627-642.
doi: 10.1016/j.apenergy.2019.01.102 |
[12] | 马学礼, 王笑飞, 孙希进, 等. 燃煤发电机组碳排放强度影响因素研究[J]. 热力发电, 2022, 51(1): 190-195. |
MA Xueli, WANG Xiaofei, SUN Xijin, et al. Influence factors of carbon emission intensity of coal-fired power units[J]. Thermal Power Generation, 2022, 51(1): 190-195. | |
[13] |
TIAN Z Y, WANG Z, CHONG D J, et al. Coordinated control strategy assessment of a virtual power plant based on electric public transportation[J]. Journal of Energy Storage, 2023, 59: 106380.
doi: 10.1016/j.est.2022.106380 |
[14] |
JU L W, YIN Z, ZHOU Q Q, et al. Nearly-zero carbon optimal operation model and benefit allocation strategy for a novel virtual power plant using carbon capture, power-to-gas, and waste incineration power in rural areas[J]. Applied Energy, 2022, 310: 118618.
doi: 10.1016/j.apenergy.2022.118618 |
[15] | 孙惠, 翟海保, 吴鑫. 源网荷储多元协调控制系统的研究及应用[J]. 电工技术学报, 2021, 36(15):3264-3271. |
SUN Hui, ZHAI Haibao, WU Xin. Research and application of multi-energy coordinated control generation, network, load and storage[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3264-3271. | |
[16] |
ROUZBAHANI H M, KARIMIPOUR H, LEI L. A review on virtual power plant for energy management[J]. Sustainable energy technologies and assessments, 2021, 47: 101370.
doi: 10.1016/j.seta.2021.101370 |
[17] |
GOIA B, CIOARA T, ANGHEL I. Virtual power plant optimization in smart grids: A narrative review[J]. Future Internet, 2022, 14(5): 128.
doi: 10.3390/fi14050128 |
[18] |
POURGHADERI N, FOTUHI‐FIRUZABAD M, MOEINI‐AGHTAIE M, et al. A local flexibility market framework for exploiting DERs' flexibility capabilities by a technical virtual power plant[J]. IET Renewable Power Generation, 2023, 17(3): 681-695.
doi: 10.1049/rpg2.v17.3 |
[19] |
ZHANG L, LIU D Y, CAI G W, et al. An optimal dispatch model for virtual power plant that incorporates carbon trading and green certificate trading[J]. International Journal of Electrical Power & Energy Systems, 2023, 144: 108558.
doi: 10.1016/j.ijepes.2022.108558 |
[20] |
MICHAEL N E, HASAN S, BISWAL B, et al. Reactive power compensation using electric vehicle and data center by integrating virtual power plant[J]. Electric Power Components and Systems, 2022, 50(4-5): 245-255.
doi: 10.1080/15325008.2022.2136288 |
[21] |
AHMADIAN A, PONNAMBALAM K, ALMANSOORI A, et al. Optimal management of a virtual power plant consisting of renewable energy resources and electric vehicles using mixed-integer linear programming and deep learning[J]. Energies, 2023, 16(2): 1000.
doi: 10.3390/en16021000 |
[22] | 薛露露, 韦围, 刘鹏, 等. 中国纯电动公交车运营现状分析与改善对策[R/OL]. 北京: 世界资源研究所, 2019. https://www.wri.org.cn/publications. |
XUE Lulu, WEI Wei, LIU Peng, et al. Overcoming the operational challenges of electric buses:Lessons learnt from China[R/OL]. Beijing: World Resources Institute, 2019. https://www.wri.org.cn/publications. | |
[23] |
ULLAH Z, HASSANIN H, CUGLEY J, et al. Planning, operation, and design of market-based virtual power plant considering uncertainty[J]. Energies, 2022, 15(19): 7290.
doi: 10.3390/en15197290 |
[24] | 王学科, 陈北洋, 周保卫, 等. 基于分离预处理的城镇污泥原位资源化技术分析[J]. 华电技术, 2021, 43(12): 23-28. |
WANG Xueke, CHEN Beiyang, ZHOU Baowei, et al. Analysis of insitu municipal sludge resource utilization technology based on separation pretreatment[J]. Huadian Technology, 2021, 43(12): 23-28. | |
[25] |
侯鲁洋, 葛磊蛟, 王飚, 等. 面向新型产消者的综合能源系统和电力市场研究[J]. 综合智慧能源, 2022, 44(12): 40-48.
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
HOU Luyang, GE Leijiao, WANG Biao, et al. Research on the integrated energy system and the electricity market towards new prosumers[J]. Integrated Intelligent Energy, 2022, 44(12): 40-48.
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
|
[26] |
葛磊蛟, 崔庆雪, 李明玮, 等. 面向低碳经济运行的新型电力系统态势感知技术综述[J]. 综合智慧能源, 2023, 45(1): 1-13.
doi: 10.3969/j.issn.2097-0706.2023.01.001 |
GE Leijiao, CUI Qingxue, LI Mingwei, et al. Review on situational awareness technology in a low-carbon oriented new power system[J]. Integrated Intelligent Energy, 2023, 45(1): 1-13.
doi: 10.3969/j.issn.2097-0706.2023.01.001 |
[1] | 徐智帆, 李华森, 李文院, 余凯. 基于递归小脑模型神经网络和卡尔曼滤波器的锂电池荷电状态预测[J]. 综合智慧能源, 2024, 46(7): 81-86. |
[2] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[3] | 李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34. |
[4] | 王林, 孔小民, 周忠玉, 刘建平, 王晓东, 张宁. 云储能模式下的配电网分布式光伏-储能无功优化方法[J]. 综合智慧能源, 2024, 46(6): 44-53. |
[5] | 张勋祥, 吴杰康, 孙烨桦, 彭其坚. 平抑海上风电波动的混合储能系统容量优化配置[J]. 综合智慧能源, 2024, 46(6): 54-65. |
[6] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[7] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[8] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[9] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[10] | 苑曙光, 张瑜婷, 王峰, 苑广震. 蒙西地区规模化储能商业运行模式及风险分析[J]. 综合智慧能源, 2024, 46(3): 63-71. |
[11] | 李益民, 董海鹰, 丁坤, 王金岩. 考虑长期负荷概率预测的储能多阶段优化配置[J]. 综合智慧能源, 2024, 46(2): 19-27. |
[12] | 孙娜, 董海鹰, 陈薇, 马虎林. 新型电力系统场景下网侧规模化储能二次调频控制策略[J]. 综合智慧能源, 2024, 46(2): 59-67. |
[13] | 孔慧超, 王文钟, 雷一, 彭静, 李海波. 园区受端新型电力系统电力电量再平衡方法[J]. 综合智慧能源, 2024, 46(2): 68-74. |
[14] | 孙雨乐, 漆淘懿, 赵宇明, 叶承晋, 惠红勋. 路网耦合下计及电动汽车V2G潜力的充电站选址定容研究[J]. 综合智慧能源, 2024, 46(1): 1-10. |
[15] | 梁艳, 郭立, 张丹, 刘智琦, 胡郁彬, 周霞, 魏聪, 单宇. 考虑主客观响应能力的电动汽车聚合潜力评估[J]. 综合智慧能源, 2023, 45(9): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||