综合智慧能源 ›› 2025, Vol. 47 ›› Issue (8): 58-67.doi: 10.3969/j.issn.2097-0706.2025.08.007

• 源网荷储优化调度 • 上一篇    下一篇

面向微网的源网荷储一体化功率分配策略研究

王宇轩(), 郝宁*(), 赵峰, 蒋俊, 张国坤, 边文杰, 尚恒   

  1. 上海发电设备成套设计研究院有限责任公司,上海 200240
  • 收稿日期:2025-01-08 修回日期:2025-02-04 出版日期:2025-07-08
  • 通讯作者: *郝宁(1988),男,高级工程师,硕士,从事储能、燃机等方面的研究,haoning@speri.com.cn
  • 作者简介:王宇轩(1997),男,工程师,硕士,从事智能电网、源网荷储等方面的研究,yxwang97@163.com
  • 基金资助:
    上海发电设备成套设计研究院自主投入科研项目(202430167J)

Research on integrated power allocation strategy of source-network-load-storage for microgrids

WANG Yuxuan(), HAO Ning*(), ZHAO Feng, JIANG Jun, ZHANG Guokun, BIAN Wenjie, SHANG Heng   

  1. Shanghai Power Equipment Research Institute Company Limited, Shanghai 200240, China
  • Received:2025-01-08 Revised:2025-02-04 Published:2025-07-08
  • Supported by:
    Shanghai Power Equipment Research Institute Autonomous Research Project(202430167J)

摘要:

针对光伏(PV)、锂电池、超级电容(SC)、质子交换膜(PEM)电解槽和微型燃气轮机耦合的直流微电网系统长期运行能力差、能源调度不协调的问题,提出一种基于锂电池荷电状态(SOC)与储氢罐氢气存储水平(LOH)协同优化的动态功率分配策略。该策略构建分层协调控制架构:上层控制基于4种典型运行工况的切换逻辑与SOC和LOH的优化运行目标,生成系统功率分配方法;底层控制实现SC、锂电池与氢能系统的功率动态分配。该分配策略下,当PV出力不足时,启动微型燃气轮机燃氢供电;当PV出力富余时,根据SOC与LOH动态分配差额功率,由锂电池充电或PEM电解槽制氢,减少长期处于深度充/放电区间对锂电池寿命的损害。基于Matlab/Simulink平台构建了光伏-制氢-储能-微型燃气轮机耦合的直流微电网模型,并进行了仿真验证。结果表明,提出的功率分配策略能够有效调节储能设备,合理配置剩余功率,确保微电网的高效、稳定运行。

关键词: 直流微电网, 荷电状态, 微型燃气轮机, 功率分配策略, 光伏, 锂电池, 储氢罐

Abstract:

To address the issues of poor long-term operational capability and uncoordinated energy scheduling in DC microgrid systems coupled with photovoltaic (PV), lithium batteries, supercapacitors (SC), proton exchange membrane (PEM) electrolyzers, and micro gas turbines, a dynamic power distribution strategy based on the coordinated optimization of state of charge (SOC) of lithium batteries and hydrogen storage level (LOH) in hydrogen storage tanks is proposed. The strategy established a hierarchical coordinated control architecture: the upper control layer generated system power distribution methods based on the switching logic of four typical operating conditions and optimization targets for SOC and LOH; the lower control layer achieved dynamic power distribution among SC, lithium batteries, and the hydrogen energy system. Under this strategy, when PV output was insufficient, the micro gas turbine was activated for hydrogen-powered supply. When PV output was surplus, the residual power was dynamically distributed based on SOC and LOH to charge lithium batteries or generate hydrogen with PEM electrolyzers. This reduced the damage to the battery's lifespan caused by prolonged deep charge/discharge cycles. A DC microgrid model coupling PV, hydrogen production, energy storage, and micro gas turbines was established on the Matlab/Simulink platform and verified through simulations. The results show that the proposed power distribution strategy effectively regulates energy storage devices, appropriately allocates the surplus power, and ensures the efficient and stable operation of the microgrid.

Key words: DC microgrid, state of charge, micro gas turbine, power distribution strategy, photovoltaic, lithium battery, hydrogen storage tank

中图分类号: