综合智慧能源 ›› 2025, Vol. 47 ›› Issue (9): 28-37.doi: 10.3969/j.issn.2097-0706.2025.09.004

• 新能源出力预测与不确定性量化 • 上一篇    下一篇

基于模态二次分解和OOA-CNN-BiLSTM-Attention的光伏发电功率组合预测

李祯(), 杨国华*(), 张元曦, 马鑫, 杨娜, 刘浩睿, 马龙腾   

  1. 宁夏大学 电子与电气工程学院,银川 750021
  • 收稿日期:2025-03-03 修回日期:2025-04-15 出版日期:2025-09-25
  • 通讯作者: * 杨国华(1972),男,教授,硕士生导师,硕士,从事电力系统自动化与智能配电网方面的研究,ygh@nxu.edu.cn
  • 作者简介:李祯(2001),男,硕士生,从事人工智能算法在光伏发电功率预测方面的研究,1835832503@qq.com
  • 基金资助:
    宁夏回族自治区自然科学基金项目(2023AAC03853);宁夏大学研究生创新项目(CXXM2025087)

Hybrid prediction of photovoltaic power generation based on modal secondary decomposition and OOA-CNN-BiLSTM-Attention

LI Zhen(), YANG Guohua*(), ZHANG Yuanxi, MA Xin, YANG Na, LIU Haorui, MA Longteng   

  1. School of Electronic and Electrical Engineering, Ningxia University, Yinchuan 750021, China
  • Received:2025-03-03 Revised:2025-04-15 Published:2025-09-25
  • Supported by:
    Ningxia Hui Autonomous Region Natural Science Foundation Project(2023AAC03853);Ningxia University Graduate Innovation Project(CXXM2025087)

摘要:

由于太阳辐射的间歇性和不稳定性,光伏发电功率具有较高的随机性和波动性,给电网的稳定运行带来了挑战。为提高预测精度,采用带自适应噪声的完全集合经验模态分解对光伏发电功率数据进行分解,得到不同频率的本征模态分量;基于样本熵对这些分量进行K-means聚类,划分为高频、中频和低频分量,然后进一步对高频分量采用变分模态分解进行细化分解;结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力(Attention)机制构建了复合深度学习预测模型,并利用鱼鹰优化(OOA)算法对超参数进行优化。试验结果显示,所提基于模态二次分解和OOA-CNN-BiLSTM-Attention的组合预测模型的均方根误差为4.11 kW,平均绝对误差为2.88 kW,平均绝对百分比误差为3.08%,决定系数为98.89%,优于其他模型,表明该方法能够有效捕捉光伏发电功率的多尺度特征,具有较强的泛化能力和应用潜力。

关键词: 光伏功率预测, 模态分解, 卷积神经网络, BiLSTM神经网络, 注意力机制

Abstract:

Due to the intermittency and instability of solar radiation, photovoltaic(PV) power generation shows high randomness and fluctuation, posing challenges to the stable operation of power grids. To improve prediction accuracy, the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) was applied to decompose PV power data into intrinsic mode functions(IMFs) with different frequencies. These IMFs were clustered using K-means based on sample entropy, categorizing into high-, medium-, and low-frequency components. The high-frequency components were further decomposed using variational mode decomposition(VMD) for refined analysis. A hybrid deep learning prediction model was established by integrating convolutional neural network(CNN), bidirectional long short-term memory (BiLSTM) network, and attention mechanism. The osprey optimization algorithm(OOA) was employed to optimize the model's hyperparameters. The experimental results showed that the proposed hybrid prediction model based on modal secondary decomposition and OOA-CNN-BiLSTM-Attention achieved a root mean square error of 4.11 kW, a mean absolute error of 2.88 kW, a mean absolute percentage error of 3.08%, and a coefficient of determination of 98.89%, outperforming other models. It is demonstrated that the proposed method effectively captures the multi-scale features of PV power generation with strong generalization ability and application potential.

Key words: photovoltaic power prediction, modal decomposition, convolutional neural network, BiLSTM neural network, attention mechanism

中图分类号: