Huadian Technology ›› 2021, Vol. 43 ›› Issue (7): 30-36.doi: 10.3969/j.issn.1674-1951.2021.07.005
• Electrochemical Energy Storage • Previous Articles Next Articles
WANG Chaoyang(), LIU Ming, ZHAO Yongliang, CHONG Daotong, YAN Junjie*(
)
Received:
2021-05-14
Revised:
2021-05-25
Published:
2021-07-25
Contact:
YAN Junjie
E-mail:chaoyang.wang@xjtu.edu.cn;yanjj@mail.xjtu.edu.cn
CLC Number:
WANG Chaoyang, LIU Ming, ZHAO Yongliang, CHONG Daotong, YAN Junjie. Transient electrochemical characteristics of solid oxide fuel cells under adiabatic conditions[J]. Huadian Technology, 2021, 43(7): 30-36.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.07.005
[1] | 习近平在第七十五届联合国大会一般性辩论上的讲话[EB/OL]. ( 2020-09-22) [2021-05-13]. http://m.xinhuanet.com/2020-09/22/c_1126527652.htm. |
[2] | 继往开来,开启全球应对气候变化新征程[EB/OL]. ( 2020-12-12) [2021-05-13]. http://www.gov.cn/gongbao/content/2020/content_5570055.htm. |
[3] | 《新时代的中国能源发展》白皮书[EB/OL]. ( 2020-12-21)[2021-05-13]. http://www.scio.gov.cn/zfbps/32832/Document/1695117/1695117.htm. |
[4] |
MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830):482-483.
doi: 10.1038/d41586-020-02927-9 |
[5] |
BOTTA G, ROMEO M, FERNANDES A, et al. Dynamic modeling of reversible solid oxide cell stack and control strategy development[J]. Energy Conversion and Management, 2019, 185:636-653.
doi: 10.1016/j.enconman.2019.01.082 |
[6] |
SRIKANTH S, HEDDRICH M P, GUPTA S, et al. Transient reversible solid oxide cell reactor operation——Experimentally validated modeling and analysis[J]. Applied Energy, 2018, 232:473-488.
doi: 10.1016/j.apenergy.2018.09.186 |
[7] | 胡小夫, 汪洋, 田立, 等. 中高温SOFC/MGT联合发电技术研究进展[J]. 华电技术, 2019, 41(8):1-5. |
HU Xiaofu, WANG Yang, TIAN Li, et al. Progress in intermediate and high temperature SOFC/MGT combined power generation technology[J]. Huadian Technology, 2019, 41(8):1-5. | |
[8] | 史翊翔, 蔡宁生, 王雨晴. 固体氧化物燃料电池能量转化与储存[M]. 北京: 科学出版社, 2019. |
[9] |
LI Zheng, ZHANG Hao, XU Haoran, et al. Advancing the multiscale understanding on solid oxide electrolysis cells via modelling approaches: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 141:110863.
doi: 10.1016/j.rser.2021.110863 |
[10] |
SHAO Z P, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431(7005):170-173.
doi: 10.1038/nature02863 |
[11] | HAUCH A, KUNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513):186. |
[12] | 蒋先锋. 固体氧化物燃料电池的热力学及电化学应用基础[J]. 化工时刊, 2012, 26(7):54-58. |
JIANG Xianfeng. Thermodynamic and electrochemistry foundation of solid oxide fuel cell[J]. Chemical Industry Times, 2012, 26(7):54-58. | |
[13] |
TIKIZ I, TAYMAZ I, PEHLIVAN H. CFD modelling and experimental validation of cell performance in a 3-D planar SOFC[J]. International Journal of Hydrogen Energy, 2019, 44(29):15441-15455.
doi: 10.1016/j.ijhydene.2019.04.152 |
[14] | 楚迪. 板式固体氧化物燃料电池电化学性能数值模拟研究[D]. 郑州:郑州大学, 2020. |
[15] |
WU Xiaojuan, YANG Danan, WANG Junhao, et al. Temperature gradient control of a solid oxide fuel cell stack[J]. Journal of Power Sources, 2019, 414:345-353.
doi: 10.1016/j.jpowsour.2018.12.058 |
[16] |
WANG Chaoyang, CHEN Ming, LIU Ming, et al. Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes[J]. Applied Energy, 2020, 263:114601.
doi: 10.1016/j.apenergy.2020.114601 |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | WANG Zhe, CHENG Gang, XING Zuoxia, FU Qitong, FU Changtao. Modeling and control optimization of photovoltaic-thermal heating system based on MPC [J]. Integrated Intelligent Energy, 2024, 46(7): 21-28. |
[4] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. |
[5] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[6] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[7] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[8] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[9] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[10] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[11] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[12] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[13] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[14] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[15] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||