Huadian Technology ›› 2021, Vol. 43 ›› Issue (7): 62-67.doi: 10.3969/j.issn.1674-1951.2021.07.010
• Thermal Energy Storage Material and Technology • Previous Articles Next Articles
XIONG Yaxuan1(), YAO Chenhua1(
), SONG Chaoyu1(
), WANG Huixiang1(
), HU Ziliang1(
), DING Yulong2
Received:
2021-04-26
Revised:
2021-06-30
Published:
2021-07-25
CLC Number:
XIONG Yaxuan, YAO Chenhua, SONG Chaoyu, WANG Huixiang, HU Ziliang, DING Yulong. Preparation and properties of low-cost phase-change heat storage materials based on semi-coke ash[J]. Huadian Technology, 2021, 43(7): 62-67.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.07.010
Tab.1
Details of different shaped phase-change heat storage materials
项目 | 定型相变储热材料 | ||||||||
---|---|---|---|---|---|---|---|---|---|
CC0 | CC1 | CC2 | CC3 | CC4 | CC5 | CC6 | CC7 | CC8 | |
ω(PCM)/% | 100.0 | 60.0 | 50.0 | 47.5 | 45.0 | 42.5 | 40.0 | 35.0 | 30.0 |
ω(骨架材料)/% | 0.0 | 40.0 | 50.0 | 52.5 | 55.0 | 57.5 | 60.0 | 65.0 | 70.0 |
ω(烧结剂)/% | – | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
烧结后目视观察效果 | – | S | L | N | N | N | N | N | N |
[1] | 刘助仁. 新能源: 缓解能源短缺和环境污染的希望[J]. 国际技术经济研究, 2007(4):22-26. |
[2] | 赵国涛, 钱国明, 王盛. “双碳”目标下绿色电力低碳发展的路径分析[J]. 华电技术, 2021, 43(6):11-20. |
ZHAO Guotao, QIAN Guoming, WANG Sheng. Analysis on green and low-carbon development path for power industry to realize carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(6):11-20. | |
[3] | 陈睿哲, 熊亚选, 张慧, 等. 储能供热熔盐换热器设计及运行特性分析[J]. 华电技术, 2020, 42(12):54-59. |
CHEN Ruizhe, XIONG Yaxuan, ZHANG Hui, et al. Design and dynamic performance analysis on a molten salt heat exchanger for energy storage and heating[J]. Huadian Technology, 2020, 42(12):54-59. | |
[4] | LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255.DOI: 10.1016/j.apenergy.2019.113806. |
[5] | LI Q, CONG L, ZHANG X, et al. Fabrication and thermal properties investigation of aluminium based composite phase change material for medium and high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 211.DOI: 10.1016/j.solmat.2020.110511. |
[6] | WANG T, ZHANG T, XU G, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells, 2019, 206.DOI: 10.1016/j.solmat.2019.110328. |
[7] | 王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3):332-340. |
WANG Yan, HUANG Yun, YAO Hua, et al. Preparation and properties of solar salt/steel slag shaped composite phase change heat storage materials[J]. The Chinese Journal of Process Engineering, 2021, 21(3):332-340. | |
[8] | 李进, 王峰, 张世广, 等. 四元硝酸盐/MCM41多孔复合蓄热材料的制备及稳定性研究[J]. 华电技术, 2020, 42(4):17-22. |
LI Jin, WANG Feng, ZHANG Shiguang, et al. Study on preparation for quaternary nitrates/MCM41 porous composite heat-storage material and its stability[J]. Huadian Technology, 2020, 42(4):17-22. | |
[9] | ANAGNOSTOPOULOS A, NAVARRO M E, STEFANIDOU M, et al. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications[J]. Journal of Hazardous Materials, 2021, 413.DOI: 10.1016/j.jhazmat.2021.125407. |
[10] |
LI R, ZHU J, ZHOU W, et al. Thermal compatibility of Sodium Nitrate/Expanded Perlite composite phase change materials[J]. Applied Thermal Engineering, 2016, 103:452-458.
doi: 10.1016/j.applthermaleng.2016.03.108 |
[11] |
SANG L, LI F, XU Y. Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage[J]. Solar Energy, 2019, 180:1-7.
doi: 10.1016/j.solener.2019.01.002 |
[12] |
GUO Q, WANG T. Study on preparation and thermal properties of sodium nitrate/silica composite as shape-stabilized phase change material[J]. Thermochimica Acta, 2015, 613:66-70.
doi: 10.1016/j.tca.2015.05.023 |
[13] |
YU Q, JIANG Z, CONG L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2019, 237:367-377.
doi: 10.1016/j.apenergy.2018.12.072 |
[14] |
YE F, GE Z W, DING Y L, et al. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage[J]. Particuology, 2014, 15(4):56-60.
doi: 10.1016/j.partic.2013.05.001 |
[15] | JIANG F, ZHANG L L, SHE X H, et al. Skeleton materials for shape-stabilization of high temperature salts based phase change materials:A critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119.DOI: 10.1016/j.rser.2019.109539. |
[16] | 李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020, 39(12):5066-5085. |
LI Zhao, LI Baorang, CHEN Haozhi, et al. State of the art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12):5066-5085. | |
[17] | 王长君, 刘硕, 丁薛峰. 相变储能技术在清洁供暖中的应用研究[J]. 华电技术, 2020, 42(11):91-96. |
WANG Changjun, LIU Shuo, DING Xuefeng. The study on application of phase change energy storage technology in clean heating[J]. Huadian Technology, 2020, 42(11):91-96. | |
[18] | 钟声远, 赵军, 李浩, 等. 基于城市功能区划分的分布式相变蓄热站热经济性分析[J]. 华电技术, 2020, 42(4):23-30. |
ZHONG Shengyuan, ZHAO Jun, LI Hao, et al. Thermal economy analysis of distributed phase change heat storage stations based on urban functional zoning[J]. Huadian Technology, 2020, 42(4):23-30. | |
[19] |
LI C, LI Q, DING Y L. Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage:From component to device level performance through modelling[J]. Renewable Energy, 2019, 140:140-151.
doi: 10.1016/j.renene.2019.03.005 |
[20] | 王铁营, 王凯晨, 张天影, 等. 粉煤灰高温定型相变储热材料制备及性能表征[J]. 中国科学:技术科学, 2020, 50(9):1235-1242. |
WANG Tieying, WANG Kaichen, ZHANG Tianying, et al. High-temperature shape-stable phase-change material based on coal fly ash[J]. Scientia Sinica(Technologica), 2020, 50(9):1235-1242. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. |
[4] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[5] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[6] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[7] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[8] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[9] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[10] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[11] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[12] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[13] | MENG Qiang, TIAN Xi, XIONG Yaxuan. Study on preparation of shape-stable phase-change materials based on cellular concrete and their performances [J]. Integrated Intelligent Energy, 2024, 46(3): 29-34. |
[14] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[15] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||