Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (1): 63-71.doi: 10.3969/j.issn.2097-0706.2022.01.009
• Optimized Operation and Control of Integrated Energy Systems • Previous Articles Next Articles
JIANG Wenkun1,2(), HAN Yinghui2,*(
), XUE Zhiwen1, ZHU Yongqi1, XU Yanmei1(
)
Received:
2021-07-29
Revised:
2021-11-07
Published:
2022-01-25
Contact:
HAN Yinghui
E-mail:jiangwenkun123456@163.com;hanyinghui@ucas.ac.cn;xuyanmei@ncepu.edu.cn
CLC Number:
JIANG Wenkun, HAN Yinghui, XUE Zhiwen, ZHU Yongqi, XU Yanmei. Energy storage technologies and their applications in multi-energy complementary power system[J]. Integrated Intelligent Energy, 2022, 44(1): 63-71.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.01.009
Table 1
Advantages and disadvantages of energy storage technologies
储能技术 | 优点 | 缺点 |
---|---|---|
氢储能 | 清洁环保,高效储能 | 储氢、运输氢技术不成熟 |
超级电容储能 | 储能效率高,循环寿命长,功率密度高,维护成本低 | 能量密度较低,投资成本高,有一定的自放电率 |
蓄电池储能 | 技术成熟,维护方便,储能效率高,能量密度高 | 电池昂贵,维护成本高,功率密度低 |
压缩空气储能 | 能高效储存风电 | 依赖地理条件 |
飞轮储能 | 寿命长,稳定性好,功率密度高,占地面积小 | 能量密度低 |
抽水蓄能 | 能大规模集中式能量存储,技术十分成熟 | 厂址选择依赖地理条件 |
超导电磁储能 | 功率密度高,响应速度快 | 储能成本高,能量密度低,维持储能材料所需温度会消耗大量能量 |
[1] | 陈明福, 宾雪, 刘峻, 等. “清洁能源综合体”及其发展模式研究[J]. 能源与环境, 2020(6):37-39. |
CHEN Mingfu, BIN Xue, LIU Jun, et al. Research on "clean energy complex" and its development model[J]. Energy and Environment, 2020(6):37-39. | |
[2] | 李凯, 康世崴, 闫方, 等. 基于风光火储的多能互补新能源基地规划分析[J]. 山东电力技术, 2020, 47(10):17-22,35. |
LI Kai, KANG Shiwei, YAN Fang, et al. Planning analysis of new energy base based on wind-photovoltaic-thermal-energy storage multi-energy complementary[J]. Shandong Electric Power, 2020, 47(10):17-21,35. | |
[3] | 伍赛特. 储能技术及其在电力系统中的应用与发展[J]. 上海节能, 2020(4):364-366. |
WU Saite. Energy storage technology and its application and development in power systems[J]. Shanghai Energy Conservation, 2020(4):364-366. | |
[4] | 李奇, 赵淑丹, 蒲雨辰, 等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36(3):486-495. |
LI Qi, ZHAO Shudan, PU Yuchen, et al. Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(3):486-495. | |
[5] | 何青, 沈轶. 风氢耦合储能系统技术发展现状[J]. 热力发电, 2021, 50(8):9-17. |
HE Qing, SHEN Yi. Development status of hydrogen energy storage system coupled wind power generation[J]. Thermal Power Generation, 2021, 50(8):9-17. | |
[6] | 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7):17-23. |
TONG Jialin, HONG Qing, LYU Hongkun, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7):17-23. | |
[7] | 梅简, 张杰, 刘双宇, 等. 电池储能技术发展现状[J]. 浙江电力, 2020, 39(3):75-81. |
MEI Jian, ZHANG Jie, LIU Shuangyu, et al. Development status of battery energy storage technology[J]. Zhejiang Electric Power, 2020, 39(3):75-81. | |
[8] | AHMED O A, BLEIJS J A M. Power flow control methods for an ultracapacitor bidirectional converter in DC microgrids—A comparative study[J]. Renewable & Sustainable Energy Reviews, 2013, 26:727-738. |
[9] |
SHAIKH F F M, KAMAT R K. Fundamentals,mechanisms and key performance factors in super-capacitor[J]. Reference Module in Earth Systems and Environmental Sciences, 2021.DOI: 10.1016/B978-0-12-819723-3.00027-5.
doi: 10.1016/B978-0-12-819723-3.00027-5 |
[10] | YANG Y, TAN J Y. Application of mixed storage technology containing super capacitor in a micro-grid[J]. Electric Switchgear, 2016:7-9. |
[11] |
ZHANG L, WU D D, WANG G W, et al. An aqueous zinc-ion hybrid super-capacitor for achieving ultrahigh-volumetric energy density[J]. Chinese Chemical Letters, 2021, 32(2):926-931.
doi: 10.1016/j.cclet.2020.06.037 |
[12] | 缪平, 姚祯, 王保国, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3):670-677. |
MIAO Ping, YAO Zhen, WANG Baoguo, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3):670-677. | |
[13] | 刘彦齐, 丁亚鹏, 张明, 等. 电力储能技术及应用研究[J]. 装备维修技术, 2020(2):293,295. |
LIU Yanqi, DING Yapeng, ZHANG Ming, et al. Research on power storage technology and application[J]. Equipment Technology, 2020(2):293,295. | |
[14] |
ZHANG Y, MANAIG D, FRESCHI D J, et al. Materials design and fundamental understanding of tellurium-based electrochemistry for rechargeable batteries[J]. Energy Storage Materials, 2021, 40:166-188.
doi: 10.1016/j.ensm.2021.05.011 |
[15] |
PRADHAN S K, CHAKRABORTY B. Substrate materials and novel designs for bipolar lead-acid batteries:A review[J]. Journal of Energy Storage, 2020, 32.DOI: 10.1016/j.est.2020.101764.
doi: 10.1016/j.est.2020.101764 |
[16] |
XU Y, JUNG K, PARK Y C, et al. Selection of container materials for modern planar sodium sulfur(NaS) energy storage cells towards higher thermo-mechanical stability[J]. Journal of Energy Storage, 2017, 12:215-225.
doi: 10.1016/j.est.2017.05.007 |
[17] | 王先友. 锂离子电池正极材料发展动态及前景分析[C]// 2016中国国际新能源材料及动力电池高峰论坛暨第八届中国储能与动力电池及其关键材料学术研讨与技术交流会论文集. 2016: 24. |
[18] | 黄博文. 储能应用领域与场景综述[J]. 大众用电, 2020, 35(10):19-20. |
HUANG Bowen. Overview of energy storage application fields and scenarios[J]. Popular Utilization of Electricity, 2020, 35(10):19-20. | |
[19] | 谢佶晟, 肖竹梅, 左文华, 等. 钠离子电池钴酸钠正极材料研究进展[J/OL]. 化学学报:1-12[2021-09-17]. http://kns.cnki.net/kcms/detail/31.1320.O6.20210720.1832.004.html. |
XIE Jisheng, XIAO Zhumei, ZUO Wenhua, et al. Research progress of sodium cobalate cathode material for sodium ion battery[J/OL]. Acta Chimica Sinica1-12[2021-09-17]. http://kns.cnki.net/kcms/detail/31.1320.O6.20210720.1832.004.html. | |
[20] |
JINHYEOK A, SUKEUN Y, YOUNG K J, et al. The controlled release of active substance from one-dimensional inorganic nanocarrier for the stability enhancement of lithium batteries[J]. Chemical Engineering Journal, 2022, 427.DOI: 10.1016/J.CEJ.2021.131748.
doi: 10.1016/J.CEJ.2021.131748 |
[21] | 梁继业, 迟浩宇, 张洪彦. 锂电池在储能领域的应用与发展趋势[J]. 电动工具, 2020(5):20-23. |
LIANG Jiye, CHI Haoyu, ZHANG Hongyan. Application and development trend of lithium battery in energy storage field[J]. Electrokinetic Tool, 2020(5):20-23. | |
[22] | LI P Y. Isothermal compressed air energy storage(i-CAES) system[M]. Netherlands: Elsevier Scientific Publishing Company, 2021. |
[23] |
ROUINDEJ K, SAMADANI E, FRASER R A. CAES by design:A user-centered approach to designing Compressed Air Energy Storage(CAES) systems for future electrical grid:A case study for Ontario[J]. Sustainable Energy Technologies and Assessments, 2019, 35:58-72.
doi: 10.1016/j.seta.2019.05.008 |
[24] |
RAZMI A R, SOLTANI M, ARDEHALI A, et al. Design,thermodynamic,and wind assessments of a compressed air energy storage(CAES) integrated with two adjacent wind farms:A case study at Abhar and Kahak sites,Iran[J]. Energy, 2021, 221.DOI: 10.1016/j.energy.2021.119902.
doi: 10.1016/j.energy.2021.119902 |
[25] | 陶宇航, 朱辉, 何岩岩. 一种新型飞轮储能技术在移动供电保障作业场景下的应用[J]. 电气技术与经济, 2018(3):31-34,61. |
TAO Yuhang, ZHU Hui, HE Yanyan. Application of a new flywheel energy storage technology in mobile power supply guarantee operation scenario[J]. Electrical Equipment and Economy, 2018(3):31-34,61. | |
[26] | 薛飞宇, 梁双印. 飞轮储能核心技术发展现状与展望[J]. 节能, 2020, 39(11):119-122. |
XUE Feiyu, LIANG Shuangyin. Development status and prospect of core technology of flywheel energy storage system[J]. Energy Conservation, 2020, 39(11):119-122. | |
[27] |
SATPATHY S, DAS S, BHATTACHARYYA B K. How and where to use super-capacitors effectively,an integration of review of past and new characterization works on super-capacitors[J]. Journal of Energy Storage, 2020, 27.DOI: 10.1016/j.est.2019.101044.
doi: 10.1016/j.est.2019.101044 |
[28] | 高苏杰, 郑小康, 陈顺义, 等. 大型抽水蓄能机组关键技术、成套设备及工程应用[Z]. 国网新源控股有限公司, 2016. |
[29] | MUKHERJEE P, RAO V V. Design and development of high temperature superconducting magnetic energy storage for power applications—A review[J]. Physica C:Superconductivity and its Applications, 2019, 563:67-73. |
[30] |
BOUDIA A, MESSALTI S, HARRAG A. New hybrid photovoltaic system connected to superconducting magnetic energy storage controlled by PID-fuzzy controller[J]. Energy Conversion and Management, 2021, 244.DOI: 10.1016/j.enconman.2021.114435.
doi: 10.1016/j.enconman.2021.114435 |
[31] |
LIU C, LI Q, WANG K. State-of-charge estimation and remaining useful life prediction of supercapacitors[J]. Renewable and Sustainable Energy Reviews, 2021, 150.DOI: 10.1016/j.rser.2021.111408.
doi: 10.1016/j.rser.2021.111408 |
[32] | 刘波. 超导储能应用于电力方面的研究[J]. 科技创新与应用, 2016(30):71. |
LIU Bo. Research on superconducting energy storage applied to electric power[J]. Technology Innovation and Application, 2016(30):71. | |
[33] | 谢聪鑫, 郑琼, 李先锋, 等. 液流电池技术的最新进展[J]. 储能科学与技术, 2017, 6(5):1050-1057. |
XIE Congxin, ZHENG Qiong, LI Xianfeng, et al. Current advances in the flow battery technology[J]. Energy Storage Science and Technology, 2017, 6(5):1050-1057. | |
[34] | 赖春艳, 陈宏, 倪嘉茜, 等. 锂离子电池储能技术在电力能源中的应用模式与发展趋势[J]. 上海电力大学学报, 2021, 37(4):380-384. |
LAI Chunyan, CHEN Hong, NI Jiaxi, et al. Application mode and development trend of lithium ion battery energy storage technology in electric energy[J]. Journal of Shanghai University of Electric Power, 2021, 37(4):380-384. | |
[35] | 胡其图. 储能技术在风力发电中的应用[J]. 科技创新导报, 2018, 15(22):15,17. |
HU Qitu. Application of energy storage technology in wind power generation[J]. Science and Technology Innovation Herald, 2018, 15(22):15,17. | |
[36] | 张虹, 孙权, 李占军, 等. 风氢耦合系统协同控制发电策略研究[J]. 东北电力大学学报, 2018, 38(3):15-23. |
ZHANG Hong, SUN Quan, LI Zhanjun, et al. Hydrogen wind coupling system coordination control power strategy research[J]. Journal of Northeast Dianli University(Natural Science Edition), 2018, 38(3):15-23. | |
[37] | 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21):127-135. |
CAI Guowei, KONG Lingguo, XUE Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21):127-135. | |
[38] | 朱熀秋, 汤延祺. 飞轮储能关键技术及应用发展趋势[J]. 机械设计与制造, 2017(1):265-268. |
ZHU Huangqiu, TANG Yanqi. Key technologies and application trends of flywheel energy storage system[J]. Machinery Design & Manufacture, 2017(1):265-268. | |
[39] | 秦羽飞, 葛磊蛟, 王波. 能源互联网群体智能协同控制与优化技术[J]. 华电技术, 2021, 43(9):1-13. |
QIN Yufei, GE Leijiao, WANG Bo. Swarm intelligence collaborative control and optimization technology of Energy Internet[J]. Huadian Technology, 2021, 43(9):1-13. | |
[40] | 程路, 白建华. 新时期中国抽水蓄能电站发展定位及前景展望[J]. 中国电力, 2013, 46(11):155-159. |
CHENG Lu, BAI Jianhua. Role and prospect of pumped storage power stations in China[J]. Electric Power, 2013, 46(11):155-159. | |
[41] | 刘林鹏, 陈嘉俊, 朱建全, 等. 风储联合参与电能量与快速调频市场的优化投标策略[J]. 华电技术, 2021, 43(9):46-53. |
LIU Linpeng, CHEN Jiajun, ZHU Jianquan, et al. Optimization bidding strategy for wind power and energy storage participating in energy market[J]. Huadian Technology, 2021, 43(9):46-53. | |
[42] | 王建华. 丰宁抽水蓄能电站枢纽布置及关键技术[C]//中国水力发电工程学会电网调峰与抽水蓄能专业委员会.抽水蓄能电站工程建设文集2020. 北京: 中国水利水电出版社, 2020:87-93. |
[43] | 陈忠, 张和平, 蔡新合. 哈密抽水蓄能电站的建设必要性[C]//中国水力发电工程学会电网调峰与抽水蓄能专业委员会.抽水蓄能电站工程建设文集2016. 北京: 中国电力出版社, 2016:62-69. |
[44] |
COLMENAR-SANTOS A, MOLINA-IBÁÑEZ E L, ROSALES-ASENSIO E. Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage:Application to the case of the Spanish electrical system[J]. Renewable and Sustainable Energy Reviews, 2018, 82:2455-2470.
doi: 10.1016/j.rser.2017.09.012 |
[45] | 苏小玲, 杨军, 甘嘉田, 等. 新型光伏逆变器涉网运行性能工程测试系统[J]. 华电技术, 2021, 43(9):23-30. |
SU Xiaoling, YANG Jun, GAN Jiatian, et al. Engineering test system for the performance of a new type photovoltaic inverter involved in power grid[J]. Huadian Technology, 2021, 43(9):23-30. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[4] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[5] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[6] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[7] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[8] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[9] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[10] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[11] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[12] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[13] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[14] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[15] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||