Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (4): 1-11.doi: 10.3969/j.issn.2097-0706.2022.04.001
• Power Generation and Intelligent Control • Next Articles
CHEN Tiantian1(), GAO Yajing2(
), LU Zhanhui1,*(
)
Received:
2021-09-23
Revised:
2022-01-10
Published:
2022-04-25
Contact:
LU Zhanhui
E-mail:1174576665@qq.com;ncepugyj@163.com;luzhanhui@ncepu.edu.cn
CLC Number:
CHEN Tiantian, GAO Yajing, LU Zhanhui. Research on improved fuzzy mean curve clustering method based on two-scale measurement[J]. Integrated Intelligent Energy, 2022, 44(4): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.04.001
Table 6
Comprehensive distance weight selection comparison
皮尔逊距离权重 | DTW距离权重 | XB | SI |
---|---|---|---|
0.100 0 | 0.900 0 | 4.734 8 | 4.159 3 |
0.200 0 | 0.800 0 | 2.956 0 | 3.803 9 |
0.300 0 | 0.700 0 | 2.343 5 | 3.654 0 |
0.400 0 | 0.600 0 | 1.236 8 | 3.556 2 |
0.500 0 | 0.500 0 | 1.253 3 | 3.485 0 |
0.600 0 | 0.400 0 | 1.306 8 | 3.558 9 |
0.700 0 | 0.300 0 | 1.378 3 | 3.551 0 |
0.800 0 | 0.200 0 | 1.450 3 | 3.618 2 |
0.900 0 | 0.100 0 | 1.519 3 | 3.634 7 |
0.495 1 | 0.504 9 | 1.250 8 | 3.486 0 |
[1] | 许腾腾, 王瑞, 黄恒君. 一种加入类间因素的曲线聚类算法[J]. 智能系统学报, 2019, 14(2):362-368. |
XU Tengteng, WANG Rui, HUANG Hengjun. Curve clustering algorithms by adding the differences among clusters[J]. CAAI Transactions on Intelligent Systems, 2019, 14(2):362-368. | |
[2] | 张东霞, 苗新, 刘丽平, 等. 智能电网大数据技术发展研究[J]. 中国电机工程学报, 2015, 35(1):2-12. |
ZHANG Dongxia, MIAO Xin, LIU Liping, et al. Research on development strategy for smart grid big data[J]. Proceedings of the CSEE, 2015, 35(1):2-12. | |
[3] | 朱天怡, 艾芊, 贺兴, 等. 基于数据驱动的用电行为分析方法及应用综述[J]. 电网技术, 2020, 44(9):3497-3507. |
ZHU Tianyi, AI Qian, HE Xing, et al. An overview of data-driven electricity consumption behavior analysis method and application[J]. Power System Technology, 2020, 44(9):3497-3507. | |
[4] | 王群, 董文略, 杨莉. 基于Wasserstein距离和改进K-medoids聚类的风电/光伏经典场景集生成算法[J]. 中国电机工程学报, 2015, 35(11):2654-2661. |
WANG Qun, DONG Wenlue, YANG Li. A wind power/photovoltaic typical scenario set generation algorithm based on Wasserstein distance metric and revised K-medoids cluster[J]. Proceedings of the CSEE, 2015, 35(11):2654-2661. | |
[5] |
MAHELA O P, KHAN B, ALHELOU H H, et al. Power quality assessment and event detection in distribution network with wind energy penetration using stockwell transform and fuzzy clustering[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11):6922-6932.
doi: 10.1109/TII.2020.2971709 |
[6] | 王潇笛, 刘俊勇, 刘友波, 等. 采用自适应分段聚合近似的典型负荷曲线形态聚类算法[J]. 电力系统自动化, 2019, 43(1):110-118. |
WANG Xiaodi, LIU Junyong, LIU Youbo, et al. Shape clustering algorithm of typical load curves based on adaptive piecewise aggregate approximation[J]. Automation of Electric Power Systems, 2019, 43(1):110-118. | |
[7] | 刘永光, 孙超亮, 牛贞贞, 等. 改进型模糊C均值聚类算法的电力负荷特性分类技术研究[J]. 电测与仪表, 2014, 51(18):5-9. |
LIU Yongguang, SUN Chaoliang, NIU Zhenzhen, et al. Research on the improved fuzzy C-means clustering algorithm based power load characteristic classification technology[J]. Electrical Measurement & Instrumentation, 2014, 51(18):5-9. | |
[8] | 刘辉舟, 周开乐, 胡小建. 基于模糊负荷聚类的不良负荷数据辨识与修正[J]. 中国电力, 2013, 46(10):29-34. |
LIU Huizhou, ZHOU Kaile, HU Xiaojian. Bad data identification and correction based on load clustering by FCM algorithm[J]. Electric Power, 2013, 46(10):29-34. | |
[9] | 徐衍会, 张蓝宇, 宋歌. 基于核的模糊C均值逐层聚类算法在负荷分类中的应用[J]. 电力建设, 2015, 36(4):46-51. |
XU Yanhui, ZHANG Lanyu, SONG Ge. Application of clustering hierarchy algorithm based on kernel fuzzy C-means in power load classification[J]. Electric Power Construction, 2015, 36(4):46-51. | |
[10] | 吴亚雄, 高崇, 曹华珍, 等. 基于灰狼优化聚类算法的日负荷曲线聚类分析[J]. 电力系统保护与控制, 2020, 48(6):68-76. |
WU Yaxiong, GAO Chong, CAO Huazhen, et al. Clustering analysis of daily load curves based on GWO algorithm[J]. Power System Protection and Control, 2020, 48(6):68-76. | |
[11] | 常鲜戎, 孙景文. 基于改进的模糊C均值聚类的负荷预处理[J]. 华北电力大学学报(自然科学版), 2014, 41(1):27-32. |
CHANG Xianrong, SUN Jingwen. Data processing based on improved fuzzy C-means clustering[J]. Journal of North China Electric Power University(Natural Science Edition), 2014, 41(1):27-32. | |
[12] | 孔祥玉, 胡启安, 董旭柱, 等. 引入改进模糊C均值聚类的负荷数据辨识及修复方法[J]. 电力系统自动化, 2017, 41(9):90-95. |
KONG Xiangyu, HU Qi'an, DONG Xuzhu, et al. Load data identification and correction method with improved fuzzy C-means clustering algorithm[J]. Automation of Electric Power Systems, 2017, 41(9):90-95. | |
[13] | 李云飞, 张鹏, 程鹏飞, 等. 大数据挖掘下冲击性负荷特性电网短期负荷预测的探索与实践[J]. 电力大数据, 2019, 22(4):80-86. |
LI Yunfei, ZHANG Peng, CHENG Pengfei, et al. Exploration and practice of short-term load forecasting based on large data mining under impulse load characteristics[J]. Power Systems and Big Data, 2019, 22(4):80-86. | |
[14] | 李阳, 刘友波, 刘俊勇, 等. 基于形态距离的日负荷数据自适应稳健聚类算法[J]. 中国电机工程学报, 2019, 39(12):3409-3420. |
LI Yang, LIU Youbo, LIU Junyong. Self-adaptive and robust clustering algorithm for daily load profiles based on morphological distance[J]. Proceedings of the CSEE, 2019, 39(12):3409-3420. | |
[15] | 张发才, 李喜旺, 樊国旗. 基于高斯混合聚类的风电出力场景划分[J]. 计算机系统应用, 2021, 30(1):146-153. |
ZHANG Facai, LI Xiwang, FAN Guoqi. Wind power output scene division based on Gaussian hybrid clustering[J]. Computer Systems & Applications, 2021, 30(1):146-153. | |
[16] | 黎静华, 桑川川, 甘一夫, 等. 风电功率预测技术研究综述[J]. 现代电力, 2017, 34(3):1-11. |
LI Jinghua, SANG Chuanchuan, GAN Yifu, et al. A review of researches on wind power forecasting technology[J]. Modern Electric Power, 2017, 34(3):1-11. | |
[17] | 杨明明. 基于机舱传递函数的风机功率曲线研究[J]. 华电技术, 2020, 42(5):50-54. |
YANG Mingming. Research on wind turbine power curve based on Nacelle Transfer Function[J]. Huadian Technology, 2020, 42(5):50-54. | |
[18] |
OZKAN M B, KARAGOZ P. Data mining-based upscaling approach for regional wind power forecasting: Regional statistical hybrid wind power forecast technique (RegionalSHWIP)[J]. IEEE Access, 2019, 7:171790-171800.
doi: 10.1109/ACCESS.2019.2956203 |
[19] | 林俐, 肖舒, 费宏运, 等. 基于曲线形态特征的地区规模化风电出力场景划分[J]. 电网与清洁能源, 2020, 36(3):74-81,88. |
LIN Li, XIAO Shu, FEI Hongyun, et al. Regional scaled wind power output scene segmentation based on curve morphological features[J]. Power System and Clean Energy, 2020, 36(3):74-81,88. | |
[20] |
周炳华, 王洋, 李峰, 等. 城市能源互联网视角下的主动配电网规划设计与策略研究[J]. 华电技术, 2021, 43(1):59-65.
doi: 10.3969/j.issn.1674-1951.2021.01.010 |
ZHOU Binghua, WANG Yang, LI Feng, et al. Research on active distribution network planning and design strategy from the perspective of urban energy internet[J]. Huadian Technology, 2021, 43(1):59-65. | |
[21] | 肖满生, 阳娣兰, 张居武, 等. 基于模糊相关度的模糊C均值聚类加权指数研究[J]. 计算机应用, 2010, 30(12):3388-3390. |
XIAO Mansheng, YANG Dilan, ZHANG Juwu, et al. Research of weighting exponent of fuzzy C-means algorithm based on fuzzy relevance[J]. Journal of Computer Applications, 2010, 30(12):3388-3390. | |
[22] | 王瑞峰, 王庆荣. 基于改进双层聚类多目标优化的配电网动态重构[J]. 电力系统保护与控制, 2019, 47(21):92-99. |
WANG Ruifeng, WANG Qingrong. Multi-objective optimization of dynamic reconfiguration of distribution network based on improved bilayer clustering[J]. Power System Protection and Control, 2019, 47(21):92-99. | |
[23] |
CHOI W, CHO J, LEE S, et al. Fast constrained dynamic time warping for similarity measure of time series data[J]. IEEE Access, 2020, 8(8):222841-222858.
doi: 10.1109/ACCESS.2020.3043839 |
[24] | 李钢, 杜欣慧, 裴玥瑶, 等. 基于改进密度峰值聚类的超短期工业负荷预测[J]. 电测与仪表, 2021, 3(14):1-6. |
LI Gang, DU Xinhui, PEI Yueyao, et al. Ultra-short term industrial load prediction based on improved density peak clustering[J]. Electrical Measurement & Instrumentation. 2021, 3(14):1-6. | |
[25] |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.
doi: 10.1126/science.1242072 |
[26] | 欧阳森, 石怡理. 改进熵权法及其在电能质量评估中的应用[J]. 电力系统自动化, 2013, 37(21):156-159,164. |
OUYANG Sen, SHI Yili. A new improved entropy method and its application in power quality evaluation[J]. Automation of Electric Power Systems, 2013, 37(21):156-159,164. | |
[27] |
XIE X L, BENI G. A validity measure for fuzzy clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8):841-847.
doi: 10.1109/34.85677 |
[28] | 周世兵, 徐振源, 唐旭清. 新的K-均值算法最佳聚类数确定方法[J]. 计算机工程与应用, 2010, 46(16):27-31. |
ZHOU Shibing, XU Zhenyuan, TANG Xuqing. New method for determining optimal number of clusters in K-means clustering algorithm[J]. Computer Engineering and Applications, 2010, 46(16):27-31. |
[1] | YIN Linfei, MENG Yujie. Short-term wind power forecasting based on DenseNet convolutional neural networks [J]. Integrated Intelligent Energy, 2024, 46(7): 12-20. |
[2] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[3] | JIANG Shanhe, LI Wei, XU Xiaoyan, WANG Dekai. Short-term wind power forecasting based on variational mode decomposition and generative adversarial networks [J]. Integrated Intelligent Energy, 2024, 46(2): 28-35. |
[4] | MA Yanhong, LYU Qingquan, ZHANG Zhenzhen, ZHAO Long, ZHOU Qiang, GAO Pengfei. Wind power fluctuation mitigation strategy based on double Kalman filter considering the SOC of the energy storage system [J]. Integrated Intelligent Energy, 2023, 45(2): 61-68. |
[5] | YIN Linfei, LIU Jinyuan. Smart home energy management based on artificial emotion LSTM algorithm [J]. Integrated Intelligent Energy, 2023, 45(11): 27-35. |
[6] | WANG Kaiting, LI Xiaobin, ZHANG Hongna, LIU Shen, QU Kaiyang, LI Fengchen. Comprehensive evaluation for energy saving and emission reduction performance of turbulent drag reducing agent in heating systems [J]. Integrated Intelligent Energy, 2022, 44(9): 40-50. |
[7] | LI Hua, ZHENG Hongwei, ZHOU Bowen, LI Guangdi, YANG Bo. Two-part tariff for pumped storage power plants in an integrated intelligent energy system [J]. Integrated Intelligent Energy, 2022, 44(7): 10-18. |
[8] | WANG Xin, CHEN Zucui, BIAN Zaiping, WANG Yeyao, WU Yumiao. Optimal allocation of a wind‒PV‒battery hybrid system in smart microgrid based on particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2022, 44(6): 52-58. |
[9] | Leijiao GE, Qingxue CUI, Mingwei LI, Fang YAO, Xiaona YANG, Tianshuo DU. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV [J]. Integrated Intelligent Energy, 2022, 44(5): 1-14. |
[10] | Chang YAN, Sheng HUANG, Yinpeng QU. Review on hydrogen production technology from offshore wind power to achieve carbon neutrality [J]. Integrated Intelligent Energy, 2022, 44(5): 30-40. |
[11] | Feng WANG, Peng LU, Qingtao ZHANG, Hui ZHAO, Huaiming WANG, Yangyang RU. Development trend and prospects of hydrogen production from offshore wind power [J]. Integrated Intelligent Energy, 2022, 44(5): 41-48. |
[12] | Xinye DU, Jianxi WANG, Yonghui SUN, Yi HE, Pengpeng WU, Wei ZHOU. Optimal planning of hybrid energy storage systems in microgrids considering seawater desalination and hydrogen production [J]. Integrated Intelligent Energy, 2022, 44(5): 49-55. |
[13] | CHEN Yihui, LIN Lingqi, TIAN Xin, ZHANG Dongliang, WU Jun, LIU Zichen. Three-level wind power AVC coordinated control strategy [J]. Integrated Intelligent Energy, 2022, 44(4): 20-27. |
[14] | GUAN Xin, CHEN Tao, GAO Ciwei. Study on optimal operation of the demand-side energy storage system for wind power participating in electricity market [J]. Integrated Intelligent Energy, 2022, 44(2): 35-41. |
[15] | CUI Shuangshuang, SUN Shanxun. Study on the correlation of wind turbine variables under different conditions [J]. Integrated Intelligent Energy, 2022, 44(12): 49-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||