Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (7): 10-18.doi: 10.3969/j.issn.2097-0706.2022.07.002
• Integrated Energy System • Previous Articles Next Articles
LI Huaa,b(), ZHENG Hongweia,b(
), ZHOU Bowena,b,*(
), LI Guangdia,b(
), YANG Boa,b(
)
Received:
2022-04-03
Revised:
2022-06-03
Published:
2022-07-25
Contact:
ZHOU Bowen
E-mail:lihua@ise.neu.edu.cn;1668689249@qq.com;zhoubowen@ise.neu.edu.cn;liguangdi@ise.neu.edu.cn;yangbo@ise.neu.edu.cn
CLC Number:
LI Hua, ZHENG Hongwei, ZHOU Bowen, LI Guangdi, YANG Bo. Two-part tariff for pumped storage power plants in an integrated intelligent energy system[J]. Integrated Intelligent Energy, 2022, 44(7): 10-18.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.07.002
Table 1
Two-part tariff strategy for pumped storage power plants
时段 | 抽水成本/万元 | 电价/[元·(MW·h)-1] | |
---|---|---|---|
电量电价 | 容量电价 | ||
00:00—01:00 | 5.74 | 462.81 | 146.83 |
01:00—02:00 | 12.39 | 445.94 | |
02:00—03:00 | 11.91 | 428.73 | |
03:00—04:00 | 11.54 | 415.36 | |
04:00—05:00 | 11.95 | 430.12 | |
05:00—06:00 | 11.87 | 427.33 | |
06:00—07:00 | 12.22 | 439.97 | |
07:00—08:00 | — | 466.75 | |
08:00—09:00 | 12.49 | 631.88 | |
09:00—10:00 | — | 649.14 | |
10:00—11:00 | — | 605.40 | |
11:00—12:00 | — | 487.90 | |
12:00—13:00 | — | 491.37 | |
13:00—14:00 | 7.96 | 540.79 | |
14:00—15:00 | 11.18 | 624.76 | |
15:00—16:00 | — | 650.30 | |
16:00—17:00 | — | 644.39 | |
17:00—18:00 | — | 713.29 | |
18:00—19:00 | — | 783.35 | |
19:00—20:00 | — | 769.25 | |
20:00—21:00 | — | 706.03 | |
21:00—22:00 | — | 653.93 | |
22:00—23:00 | — | 617.25 | |
23:00—24:00 | — | 508.82 |
[1] | 张金平, 周强, 王定美, 等. “双碳”目标下新型电力系统发展路径研究[J]. 华电技术, 2021, 43(12):46-51. |
ZHANG Jinping, ZHOU Qiang, WANG Dingmei, et al. Research on the development path of new power system to achieve carbon peaking and carbon neutrality[J]. Huadian Technology, 2021, 43(12):46-51. | |
[2] | 王松岑, 来小康, 程时杰. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1):3-8. |
WANG Songcen, LAI Xiaokang, CHENG Shijie. An analysis of the application prospects of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1):3-8. | |
[3] | 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7): 17-23. |
TONG Jialin, HONG Qing, LYU Hongkun, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7): 17-23. | |
[4] | 尤培培. 两部制电价反映抽水蓄能多元价值[N]. 中国能源报,2021-05-17(004). |
[5] | 孙伟卿, 裴亮, 向威, 等. 电力系统中储能的系统价值评估方法[J]. 电力系统自动化, 2019, 43(8):47-55. |
SUN Weiqing, PEI Liang, XIANG Wei, et al. Evaluation method of system value for energy storage in power system[J]. Automation of Electric Power Systems, 2019, 43(8):47-55. | |
[6] | 张晴, 李欣然, 杨明, 等. 净效益最大的平抑风电功率波动的混合储能容量配置方法[J]. 电工技术学报, 2016, 31(14):40-48. |
ZHANG Qing, LI Xinran, YANG Ming, et al. Capacity determination of hybrid energy storage system for smoothing wind power fluctuations with maximum net benefit[J]. Transactions of China Electrotechnical Society, 2016, 31(14):40-48. | |
[7] | 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14):1-10. |
LI Jianlin, MA Huimeng, HUI Dong. Present development condition and trends of energy storage technology in the integration of distributed renewable energy[J]. Transactions of China Electrical Technology, 2016, 31(14):1-10. | |
[8] | 舒康安, 张昌, 艾小猛, 等. 基于分段电价的跨区风电消纳[J]. 电工技术学报, 2017, 32(S1):39-49. |
SHU Kang'an, ZHANG Chang, AI Xiaomeng, et al. Cross-region wind power consumption based on segmented tariff[J]. Transactions of China Electrical Technology, 2017, 32(S1):39-49. | |
[9] |
YE L, ZHANG C, XUE H, et al. Study of assessment on capability of wind power accommodation in regional power grids[J]. Renewable Energy, 2018, 133:647-662.
doi: 10.1016/j.renene.2018.10.042 |
[10] | 尹硕, 郭兴五, 燕景, 等. 考虑高渗透率和碳排放约束的园区综合能源系统优化运行研究[J]. 华电技术, 2021, 43(4): 1-7. |
YIN Shuo, GUO Xingwu, YAN Jing, et al. Study on optimized operation on integrated energy system in parks with high permeability and carbon emission constraints[J]. Huadian Technology, 2021, 43(4): 1-7. | |
[11] |
LUO Yanhong, NIE Qiubo, YANG Dongsheng, et al. Robust optimal operation of active distribution network based on minimum confidence interval of distributed energy Beta distribution[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(2):423-430.
doi: 10.35833/MPCE.2020.000198 |
[12] | 王煜东. 面向新能源消纳的发电侧两部制电价机制设计[D]. 银川: 宁夏大学, 2020. |
[13] |
KHANI H, FARAG H E Z. Joint arbitrage and operating reserve scheduling of energy storage through optimal adaptive allocation of the state of charge[J]. IEEE Transactions on Sustainable Energy, 2019, 10(4):1705-1717.
doi: 10.1109/TSTE.2018.2869882 |
[14] |
ZHANG Y X, XU Y, YANG H M, et al. Optimal whole-life-cycle planning of battery energy storage for multifunctional services in power systems[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4):2077-2086.
doi: 10.1109/TSTE.2019.2942066 |
[15] |
ABDELTAWAB H, MOHAMED A R I. Mobile energy storage sizing and allocation for multi-services in power distribution systems[J]. IEEE Access, 2019, 7:176613-176623.
doi: 10.1109/ACCESS.2019.2957243 |
[16] | 冯力勇, 张云. 考虑电池能效的电网侧电化学储能电站最优功率控制策略研究[J]. 华电技术, 2020, 42(4): 37-41. |
FENG Liyong, ZHANG Yun. Optimal power control strategy of grid-side electrochemical energy storage stations considering battery energy efficiency[J]. Huadian Technology, 2020, 42(4): 37-41. | |
[17] |
LUO Yanhong, ZHANG Xinwen, YANG Dongsheng, et al. Emission trading based optimal scheduling strategy of energy hub with energy storage and integrated electric vehicles[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(2): 267-275.
doi: 10.35833/MPCE.2019.000144 |
[18] |
管馨, 陈涛, 高赐威. 适应风电参与电力市场的需求侧储能负荷运行优化研究[J]. 综合智慧能源, 2022, 44(2): 35-41.
doi: 10.3969/j.issn.2097-0706.2022.02.006 |
GUAN Xin, CHEN Tao, GAO Ciwei. Study on optimal operation of the demand-side energy storage system for wind power participating in electricity market[J]. Integrated Intelligent Energy, 2022, 44(2): 35-41.
doi: 10.3969/j.issn.2097-0706.2022.02.006 |
|
[19] | 武昭原, 周明, 姚尚润, 等. 基于合作博弈论的风储联合参与现货市场优化运行策略[J]. 电网技术, 2019, 43(8):2815-2824. |
WU Zhaoyuan, ZHOU Ming, YAO Shangrun, et al. Optimization operation strategy of wind-storage coalition in spot market based on cooperative game theory[J]. Power System Technology, 2019, 43(8):2815-2824. | |
[20] | 张粒子, 丛野, 陶文斌, 等. 面向电力现货市场的专项工程两部制输电价格优化模型[J]. 电力系统自动化, 2020, 44(23):90-98. |
ZHANG Lizi, CONG Ye, TAO Wenbin, et al. Optimization model of two-part transmission price for dedicated project oriented to power spot market[J]. Automation of Electric Power Systems, 2020, 44(23):90-98. | |
[21] |
ANTWEILER W. A two-part feed-in-tariff for intermittent electricity generation[J]. Energy Economics, 2017, 65:458-470.
doi: 10.1016/j.eneco.2017.05.010 |
[22] | 国家发展和改革委员会. 国家发展改革委关于进一步完善抽水蓄能价格形成机制的意见[EB/OL].(2021-04-30)[2022-03-28]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202105/t20210507_1279341.html?code=&state=123. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[4] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[5] | LIU Tao, LI Weihua, TANG Yi. Security protection of typical networks for integrated smart energy systems [J]. Integrated Intelligent Energy, 2024, 46(5): 81-90. |
[6] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[7] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[8] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[9] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[10] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[11] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
[12] | FANG Gang, WANG Jing, ZHANG Bobo, WANG Junzhe. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set [J]. Integrated Intelligent Energy, 2024, 46(1): 49-55. |
[13] | WAN Mingzhong, WANG Yuanyuan, LI Jun, LU Yuanwei, ZHAO Tian, WU Yuting. Research progress and prospect of compressed air energy storage technology [J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. |
[14] | XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development [J]. Integrated Intelligent Energy, 2023, 45(9): 48-58. |
[15] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||