Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (7): 58-65.doi: 10.3969/j.issn.2097-0706.2022.07.007
• Intelligent Power • Previous Articles Next Articles
GUO Zuogang1(), YUAN Zhiyong1(
), XU Min1(
), LEI Jinyong1, LI Pengyue2, TAN Yingjie1
Received:
2022-05-06
Revised:
2022-06-25
Published:
2022-07-25
CLC Number:
GUO Zuogang, YUAN Zhiyong, XU Min, LEI Jinyong, LI Pengyue, TAN Yingjie. Multi-energy flow calculation method for multi-energy complementary integrated energy systems[J]. Integrated Intelligent Energy, 2022, 44(7): 58-65.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.07.007
Table 1
Simulation results of energy flow in a power network
节点 | 有功功率/kW | 无功功率/ (kV·A) | 电压标幺值 | 相角/rad | 节点 | 有功功率/kW | 无功功率/ (kV·A) | 电压标幺值 | 相角/rad |
---|---|---|---|---|---|---|---|---|---|
1 | 452.699 10 | 12 955.200 00 | 1.050 000 | 0 | 31 | -0.089 91 | -0.022 48 | 1.021 811 | 1.507 875 |
2 | -0.291 79 | -0.072 95 | 1.046 712 | 0.172 388 | 32 | -1.136 61 | -0.284 15 | 1.021 720 | 1.513 188 |
3 | -0.373 21 | -0.093 30 | 1.045 058 | 0.257 537 | 33 | -0.497 05 | -0.124 26 | 1.021 695 | 1.514 691 |
4 | -0.089 91 | -0.022 48 | 1.043 429 | 0.341 869 | 34 | -0.442 77 | -0.110 69 | 1.021 561 | 1.522 794 |
5 | -0.352 86 | -0.088 21 | 1.042 747 | 0.377 323 | 35 | -0.931 34 | -0.232 83 | 1.021 427 | 1.530 912 |
6 | -0.089 91 | -0.022 48 | 1.041 448 | 0.445 050 | 36 | 0.600 00 | 0 | 1.021 310 | 1.538 196 |
7 | -1.034 82 | -0.258 71 | 1.040 998 | 0.468 576 | 37 | -0.089 91 | -0.022 48 | 1.021 277 | 1.540 196 |
8 | -0.089 91 | -0.022 48 | 1.040 831 | 0.477 322 | 38 | -0.690 45 | -0.172 61 | 1.021 168 | 1.546 877 |
9 | -0.391 88 | -0.097 97 | 1.039 461 | 0.549 423 | 39 | -0.037 32 | -0.009 33 | 1.021 081 | 1.552 284 |
10 | -0.407 14 | -0.101 79 | 1.038 504 | 0.599 982 | 40 | -0.722 68 | -0.180 67 | 1.020 926 | 1.561 882 |
11 | -0.310 45 | -0.077 61 | 1.037 581 | 0.648 851 | 41 | -0.089 91 | -0.022 48 | 1.020 820 | 1.568 520 |
12 | -0.249 38 | -0.062 34 | 1.035 947 | 0.735 828 | 42 | -0.050 89 | -0.012 72 | 1.020 694 | 1.576 614 |
13 | -0.120 45 | -0.030 11 | 1.034 809 | 0.796 613 | 43 | -0.044 11 | -0.011 03 | 1.020 618 | 1.581 481 |
14 | -0.089 91 | -0.022 48 | 1.033 659 | 0.858 238 | 44 | -0.089 91 | -0.022 48 | 1.020 545 | 1.586 150 |
15 | -0.603 93 | -0.150 98 | 1.032 107 | 0.941 811 | 45 | 0.250 00 | 0 | 1.020 416 | 1.594 489 |
16 | -0.271 43 | -0.067 86 | 1.030 647 | 1.020 777 | 46 | -0.485 18 | -0.121 29 | 1.020 394 | 1.595 909 |
17 | -0.349 46 | -0.087 37 | 1.029 571 | 1.079 217 | 47 | -0.089 91 | -0.022 48 | 1.020 365 | 1.597 799 |
18 | -0.089 91 | -0.022 48 | 1.029 153 | 1.102 010 | 48 | -0.229 02 | -0.057 25 | 1.020 331 | 1.600 068 |
19 | -0.089 91 | -0.022 48 | 1.028 640 | 1.130 007 | 49 | -1.201 07 | -0.300 27 | 1.020 265 | 1.604 387 |
20 | -0.089 91 | -0.022 48 | 1.027 053 | 1.216 978 | 50 | 14.844 59 | -0.115 78 | 1.020 138 | 1.612 903 |
21 | -0.145 89 | -0.036 47 | 1.026 892 | 1.225 812 | 51 | 0.850 00 | -129.920 00 | 1.020 000 | 1.620 312 |
22 | -0.671 79 | -0.167 95 | 1.025 966 | 1.276 797 | 52 | -0.583 57 | -0.145 89 | 1.019 999 | 1.620 270 |
23 | -0.089 91 | -0.022 48 | 1.025 575 | 1.298 416 | 53 | -0.089 91 | -0.022 48 | 1.019 994 | 1.620 133 |
24 | -0.227 32 | -0.056 83 | 1.023 844 | 1.394 489 | 54 | -1.324 91 | -0.331 23 | 1.019 989 | 1.619 960 |
25 | -0.128 93 | -0.032 23 | 1.022 555 | 1.466 372 | 55 | -0.089 91 | -0.022 48 | 1.019 986 | 1.619 867 |
26 | -0.061 07 | -0.015 27 | 1.022 074 | 1.492 987 | 56 | -0.089 91 | -0.022 48 | 1.019 982 | 1.619 731 |
27 | -0.821 07 | -0.205 27 | 1.021 988 | 1.497 775 | 57 | -0.254 46 | -0.063 62 | 1.019 978 | 1.619 602 |
28 | -0.089 91 | -0.022 48 | 1.021 968 | 1.498 917 | 58 | -0.427 50 | -0.106 88 | 1.019 976 | 1.619 541 |
29 | -0.342 68 | -0.085 67 | 1.021 850 | 1.505 628 | 59 | -1.112 86 | -0.278 21 | 1.019 974 | 1.619 465 |
30 | -0.827 86 | -0.206 96 | 1.021 833 | 1.506 619 | 60 | -2.054 38 | -0.513 59 | 1.019 973 | 1.619 457 |
Table 2
Simulation results of energy flow in a thermal network ℃
节点 | 供热温度 | 回热温度 | 节点 | 供热温度 | 回热温度 |
---|---|---|---|---|---|
1 | 200.00 | 117.06 | 100 | 70.00 | 29.72 |
2 | 199.90 | 117.08 | 101 | 69.99 | 29.71 |
3 | 199.82 | 117.10 | 102 | 69.99 | 29.71 |
4 | 199.79 | 117.21 | 103 | 69.98 | 29.70 |
5 | 199.71 | 117.24 | 104 | 69.98 | 29.70 |
6 | 199.50 | 117.32 | 105 | 69.95 | 29.70 |
7 | 199.44 | 117.28 | 106 | 69.94 | 29.70 |
8 | 199.21 | 117.40 | 107 | 69.94 | 29.70 |
9 | 198.96 | 117.47 | 108 | 69.93 | 29.71 |
10 | 198.87 | 117.47 | 109 | 69.92 | 29.71 |
11 | 198.74 | 117.49 | 110 | 69.91 | 29.71 |
12 | 198.64 | 117.49 | 111 | 69.90 | 29.70 |
13 | 198.42 | 117.49 | 112 | 69.89 | 29.70 |
14 | 197.97 | 117.30 | 113 | 69.88 | 29.70 |
15 | 197.46 | 117.15 | 114 | 69.88 | 29.69 |
16 | 196.74 | 117.47 | 115 | 69.86 | 29.64 |
17 | 195.96 | 117.62 | 116 | 69.79 | 29.65 |
18 | 195.69 | 117.60 | 117 | 69.71 | 29.66 |
19 | 194.46 | 118.10 | 118 | 69.64 | 29.67 |
20 | 192.79 | 118.07 | 119 | 69.55 | 29.62 |
Table 3
Simulation results of energy flow in a gas pipeline kPa
节点 | 压力 | 节点 | 压力 | 节点 | 压力 |
---|---|---|---|---|---|
1 | 500.0 | 21 | 484.1 | 41 | 480.7 |
2 | 498.4 | 22 | 483.6 | 42 | 480.6 |
3 | 498.1 | 23 | 483.2 | 43 | 480.6 |
4 | 497.9 | 24 | 483.0 | 44 | 480.5 |
5 | 496.1 | 25 | 482.9 | 45 | 480.5 |
6 | 494.3 | 26 | 482.4 | 46 | 480.5 |
7 | 493.3 | 27 | 482.3 | 47 | 480.5 |
8 | 493.1 | 28 | 482.1 | 48 | 480.5 |
9 | 491.5 | 29 | 481.8 | 49 | 480.4 |
10 | 490.8 | 30 | 481.8 | 50 | 480.4 |
11 | 490.3 | 31 | 481.8 | 51 | 480.3 |
12 | 489.0 | 32 | 481.6 | 52 | 498.4 |
13 | 488.9 | 33 | 481.5 | 53 | 498.4 |
14 | 488.8 | 34 | 481.2 | 54 | 498.4 |
15 | 488.0 | 35 | 481.1 | 55 | 498.4 |
16 | 487.3 | 36 | 480.9 | 56 | 498.4 |
17 | 486.7 | 37 | 480.9 | 57 | 497.9 |
18 | 485.9 | 38 | 480.9 | 58 | 497.9 |
19 | 485.2 | 39 | 480.9 | 59 | 497.9 |
20 | 484.4 | 40 | 480.8 | 60 | 497.9 |
[1] | 贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 38(7):198-207. |
JIA Hongjie, WANG Dan, XU Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power System, 2015, 38(7):198-207. | |
[2] | 袁智勇, 赵懿祺, 郭祚刚, 等. 面向能源互联网的综合能源系统规划研究综述[J]. 南方电网技术, 2019, 13(7):1-9. |
YUAN Zhiyong, ZHAO Yiqi, GUO Zuogang, et al. Research summary of integrated energy systems planning for energy internet[J]. Southern Power System Technology, 2019, 13(7):1-9. | |
[3] |
张爱平, 赵利兴, 刘静. 楼宇型综合能源服务系统智能优化运行研究[J]. 综合智慧能源, 2022, 44(2):42-48.
doi: 10.3969/j.issn.2097-0706.2022.02.007 |
ZHANG Aiping, ZHAO Lixing, LIU Jing. Research on optimized operation of building-type integrated energy service systems[J]. Integrated Intelligent Energy, 2022, 44(2):42-48.
doi: 10.3969/j.issn.2097-0706.2022.02.007 |
|
[4] | 金红光, 隋军, 徐聪, 等多能源互补的分布式冷热电联产系统理论与方法研究[J]. 中国电机工程学报, 2016, 36(12): 3150-3160. |
JIN Hongguang, SUI Jun, XU Cong, et al. Research on theory and method of muti-energy complementary distributed CCHP system[J]. Proceedings of the CSEE, 2016, 36(12): 3150-3160. | |
[5] | 朱海东, 郝浩, 郑剑, 等. 基于冷热电多能互补的园区综合能源系统设计[J]. 华电技术, 2021, 43(4): 34-38. |
ZHU Haidong, HAO Hao, ZHENG Jian, et al. Design of integrated energy system for parks based on complementation of cold, heat and electricity[J]. Huadian Technology, 2021, 43(4): 34-38. | |
[6] | 吴江, 王晶晶, 张强, 等. 考虑电转气消纳风电的电-气综合能源系统两阶段鲁棒协同调度[J]. 太阳能学报, 2022, 43(2): 436-443. |
WU Jiang, WANG Jingjing, ZHANG Qiang, et al. Two-stage robust cooperative scheduling for electricity-gas integrated energy system considering power-to-gas for wind power accommodation[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 436-443. | |
[7] | 赵瑞锋, 王海柱, 郭文鑫, 等. 含风电接入的区域综合能源系统电/热储能配置[J]. 南方电网技术, 2022, 16(4):68-77. |
ZHAO Ruifeng, WANG Haizhu, GUO Wenxin, et al. Power and heat storage configuration of regional integrated energy system with wind power integration[J]. Southern Power System Technology, 2022, 16(4):68-77. | |
[8] | 钟俊杰, 李勇, 曾子龙, 等. 综合能源系统多能流准稳态分析与计算[J]. 电力自动化设备, 2019, 39(8):22-30. |
ZHONG Junjie, LI Yong, ZENG Zilong, et al. Quasi-steady-state analysis and calculation of multi-energy flow for integrated energy system[J]. Electric Power Automation Equipment, 2019, 39(8):22-30. | |
[9] | 伍惠铖, 王淳, 刘宽, 等. 电-热综合能源系统能流的区间计算算法[J]. 电网技术, 2019, 43(1): 91-99. |
WU Huicheng, WANG Chun, LIU Kuan, et al. An interval energy flow calculation method for integrated electro-thermal energy system[J]. Power System Technology, 2019, 43(1): 91-99. | |
[10] | 孙浩, 陈永华. 综合能源系统多能流联合仿真技术研究[J]. 华电技术, 2020, 42(5): 66-72. |
SUN Hao, CHEN Yonghua. Research on multiple energy flow co-simulation technology applied in integrated energy system[J]. Huadian Technology, 2020, 42(5): 66-72. | |
[11] | 胡枭, 尚策, 程浩忠, 等. 综合能源系统能流计算方法述评与展望[J]. 电力系统自动化, 2020, 44(18): 179-191. |
HU Xiao, SHANG Ce, CHENG Haozhong, et al. Review and prospect of calculation method for energy flow in integrated energy system[J]. Automation of Electric Power System, 2020, 44(18): 179-191. | |
[12] | 孙浩, 傅金洲, 鄢小虎, 等. 区域综合能源仿真优化系统的研制[J]. 华电技术, 2021, 43(4): 8-13. |
SUN Hao, FU Jinzhou, YAN Xiaohu, et al. Research and development of integrated community energy simulation-optimization system[J]. Huadian Technology, 2021, 43(4): 8-13. | |
[13] |
KRAUSE T, ANDERSSON G, FROHLICH K, et al. Multiple-energy carriers: Modeling of production, delivery, and consumption[J]. Proceedings of the IEEE, 2011, 99(1): 15-27.
doi: 10.1109/JPROC.2010.2083610 |
[14] |
BOLLINGER L, DORER V. The ehub modeling tool: A flexible software package for district energy system optimization[J]. Energy Procedia, 2017, 122: 541-546.
doi: 10.1016/j.egypro.2017.07.402 |
[15] |
MARTINEZMARES A, FUERTE-ESQUIVEL C R. A unified gas and power flow analysis in natural gas and electricity coupled networks[J]. IEEE Transactions on Power Systems, 2012, 27: 2156-2166.
doi: 10.1109/TPWRS.2012.2191984 |
[16] |
赵霞, 戴蓉, 王骆, 等. 考虑压气站运行特性的电-气最优能流两阶段方法[J]. 中国电机工程学报, 2022. DOI: 10.13334/j.0258-8013.pcsee.211921.
doi: 10.13334/j.0258-8013.pcsee.211921 |
ZHAO Xia, DAI Rong, WANG Luo, et al. Two-stage method for optimal power-gas flow considering the operation characteristics of compressor station[J]. Proceedings of the CSEE, 2022.DOI: 10.13334/j.0258-8013.pcsee.211921.
doi: 10.13334/j.0258-8013.pcsee.211921 |
|
[17] | 郑重, 苗世洪, 赵海彭, 等. 一种新的电-气互联多区域综合能源系统最优能流计算方法[J]. 电力建设, 2021, 42(11): 117-124. |
ZHENG Zhong, MIAO Shihong, ZHAO Haipeng, et al. A new calculation method for optimal energy flow of multi-regional electricity-gas integrated energy system[J]. Electric Power Construction, 2021, 42(11): 117-124. | |
[18] | 胡宪法, 张树卿, 唐绍普, 等. 计及工质流和热传导的热力管网能流动态建模[J]. 中国电机工程学报, 2021, 41(12): 4198-4208. |
HU Xianfa, ZHANG Shuqing, TANG Shaopu, et al. Dynamic modeling of energy flow in heat supply network considering working fluid and heat conduction[J]. Proceedings of the CSEE, 2021, 41(12): 4198-4208. | |
[19] | LIU X. Combined analysis of electricity and heat networks[D]. Cardiff: Cardiff University, 2013. |
[20] | ZHAO H. Analysis, modeling and operational optimization of district heating systems[D]. Lyngby: Technical University of Denmark, 1995. |
[21] |
DE WOLF D, SMEERS Y. The gas transmission problem solved by an extension of the simplex algorithm[J]. Management Science, 2000, 46(11):1454-1465.
doi: 10.1287/mnsc.46.11.1454.12087 |
[22] | AN S, LI Q, GEDRA T W. Natural gas and electricity optimal power flow[C]// 2003 IEEE/PES Transmission and Distribution Conference and Exposition.Dallas:IEEE, 2003:138-143. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[3] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[4] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[5] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[6] | YU Sheng, ZHOU Xia, SHEN Xicheng, DAI Jianfeng, LIU Zengji. Risk analysis on the source-grid-load-storage system affected by cyber attacks [J]. Integrated Intelligent Energy, 2024, 46(5): 41-49. |
[7] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[8] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[9] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[10] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[11] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[12] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[13] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[14] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[15] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||